المحاضرة الثانية

Subgroups and Langrage Theorem

A subgroup of group G is a subset that is a group under the same operation as in G. The following definition will help to make this last phrase precise.

<u>Definition (1)</u>: Let * be an operation on a set G, and let S \subseteq G be a

subset. We say that S is closed under * if $x * y \in S$ for all $x, y \in S$.

The operation on a group G is a function *: G x G \rightarrow G. (for example, 2 and -2 lie in Z₊, but their sum -2 + 2 = 0 \notin Z₊

Definition (2): A subset H of a group G is a subgroup if:

(i) I ∈ H;
(ii) If x, y ∈ H, then x y ∈ H; that is, H is closed under *.
(iii) If x ∈ H, then x⁻¹∈ H.

<u>Proposition (3)</u>: Every subgroup $H \le G$ of a group G is itself a group.

<u>Proof:</u> Axiom (ii) (in the definition of subgroup) shows that H is closed under the operation of G; that is, H has an operation (namely, the restriction of the operation $*: G \times G \rightarrow G$ to $H \times H \subseteq G \times G$. This operation is associative:

since the equation (x y)z = x (yz) holds for all x, y, $z \in G$, it holds, in particular, for all x, y, $z \in H$. Finally, axiom (i) gives the identity, and axiom (iii) gives inverses.

It is quicker to check that a subset H of a group G is a subgroup (and hence that it is a group in its own right) than to verify the group axioms for H, for associativity is inherited from the operation on G and hence it need not be verified again.

One can shorten the list of items needed to verify that a subset is, in fact, a subgroup.

<u>Proposition (4)</u>: A subset H of a group G is a subgroup if and only if H is nonempty and, whenever x, $y \in H$, then $x y^{-1} \in H$.

<u>Proof:</u> If H is a subgroup, then it is nonempty, for $1 \in H$. If x, $y \in H$, then $y^{-1} \in H$, by part (iii) of the definition, and so x $y^{-1} \in H$, by part (ii). Conversely, assume that H is a subset satisfying the new condition. Since H is nonempty, it contains some element, say, h. Taking x = h = y, we see that $e = hh^{-1} \in H$, and so part (i) holds. If $y \in H$, then set x = e (which we can now do because $e \in H$), giving $y^{-1} = ey^{-1} \in H$, and so part (iii) holds. Finally, we know that $(y^{-1})^{-1} = y$, by. Hence, if x, $y \in H$, then $y^{-1} \in H$ and so x $y = x (y^{-1})^{-1} \in H$. Therefore, H is a subgroup of G.

Since every subgroup contains e, one may replace the hypothesis "H is nonempty" in Proposition by " $e \in H$ ".

Note that if the operation in G is added, then the proposition's condition is that H is a nonempty subset of G such that x, $y \in H$ implies x- y $\in H$.

<u>Proposition (5)</u>: Let G be a finite group, and $a \in G$. Then the order of a, is the number of elements in (a).

Definition (6): If G is a finite group, then the number of elements in G, denoted by |G|, is called the order of G.

Definition (7): If X is a subset of a group G, such that X generates G, then G is called finitely generated, and G is generated by X.

In particular, If $G = (\{a\})$, then G is generated by the subset $X = \{a\}$.

Definition (8):

A group G is called cyclic if G = (a); that is G can be generated by only one element say a, and this element is called a generator of G.

Note that we can define cyclic subgroup as follows.

Definition (9): If G is a group and $a \in G$, write

(a)= $\{a^n: n \in \mathbb{Z}_+\} = \{all \text{ powers of } a\}$

(a) is called cyclic subgroup of G generated by a.

<u>Proposition (10)</u>: The intersection of any family of subgroups is again subgroup.

Coset of sets:

Definition (1): If H is a subgroup of a group G and a G, then the coset a H is the subset a H of G, where \mathbb{E}

$$a H = \{ah: h \in H \}$$

Of course, $a = ae \in a$ H. Cosets are usually not subgroups.

The cosets just defined are often called left cosets; there are also right cosets of H, namely, subsets of the form H a {ha} $h \in H$ }; these arise in further study of groups, but we shall work almost exclusively with (left) cosets.

In particular, if the operation is addition, then the coset is denoted by

$$\mathbf{a} + \mathbf{H} = \{\mathbf{a} + \mathbf{h} : \mathbf{h} \in \mathbf{H}\}.$$

<u>Proposition (2)</u>: Let G be a group, and H be a subgroup of G, for any $a, b \in G$ we have the following:

- (i) a H = b H if and only if $b^{-1}a \in H$. In particular, a H = H if and only if $a \in H$.
- (ii) If a H \cap b H $\neq \emptyset$, then a H = b H
- (iii) For each $a \in G$: Order of

H is equal to the order of aH.

Proof:

- (i) It is clear.
- (ii) It is clear.
- (iii) The function f: $H \rightarrow a H$ which is given by f (h) = ah, is easily seen to be a bijective [its inverse a $H \rightarrow H$ is given by ah $r \rightarrow a^{-1}(ah) = h$]. Therefore, H and a H have the same number of elements.

<u>Theorem (3): (Lagrange's Theorem)</u>

If H is a subgroup of a finite group G, then |H| is a divisor of |G|. That is:

$$|G| = [G : H]|H|$$

This formula shows that the index [G : H] is also a divisor of |G|.

Corollary (4): If H is a subgroup of a finite group G, then

$$[G:H] = |G|/|H|$$

<u>Corollary</u> (5): If G is a finite group and $a \in G$, then the order of a is a divisor of |G|.

Corollary (6): If a finite group G has order m, then $a^m = e$ for all $a \in G$.

Corollary (7): If p is a prime, then every group G of order p is cyclic.

<u>Proof:</u> Choose $a \in G$ with $a \neq e$, and let H = (a) be the cyclic subgroup generated by a. By Lagrange's theorem, |H| is a divisor of |G| = p. Since p is a prime and |H| > 1, it follows that |H| = p = |G|, and so H = G.

Lagrange's theorem says that the order of a subgroup of a finite group G is a divisor of G. Is the "converse" of Lagrange's theorem true? That is, if d is a divisor of G, must there exists a subgroup of G having order d? The answer is "no;" We can show that the alternating group A4 is a group of order 12 which has no subgroup of order 6.

References

- 1. D. M. Burton, Abstract and linear algebra, 1972.
- 2. Joseph J. Rotman, Advanced Modern Algebra, 2003.
- 3. John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, 2002.
- 4. Joseph A. Gallian, Contemporary Abstract Algebra, 2010.