
 

 

 

 المحاضرة الثانية 

Subgroups and Langrage Theorem 

 

       A subgroup of group G is a subset that is a group under the same 

operation as in G. The following definition will help to make this last 

phrase precise. 

 

Definition (1): Let ∗ be an operation on a set G, and let S  ⊆ G be a  

subset. We say that S is closed under ∗ if x ∗ y ∈ S for all x , y ∈ S. 

The operation on a group G is a function *: G x G → G.   
 (for example, 2 and −2 lie in Z+, but their sum −2 + 2 = 0 ∈/Z+. 

Definition (2): A subset H of a group G is a subgroup if: 

(i) I ∈ H ; 

(ii)  If x , y ∈ H , then x y ∈ H ; that is, H is closed under ∗. 

(iii)  If x ∈ H , then x -1∈ H . 

 

Proposition (3):   Every subgroup H ≤ G of a group G is itself a group. 

Proof: Axiom (ii) (in the definition of subgroup) shows that H is 
closed under the operation of G; that is, H has an operation (namely, 
the restriction of the operation ∗: G × G → G to H × H ⊆ G × G. 
This operation is associative: 
since the equation (x y)z = x (yz) holds for all x , y, z ∈ G, it holds, 
in particular, for all x , y, z ∈ H . Finally, axiom (i) gives the 
identity, and axiom (iii) gives inverses.    

It is quicker to check that a subset H of a group G is a subgroup 

(and hence that it is a group in its own right) than to verify the group 

axioms for H, for associativity is inherited from the operation on G 

and hence it need not be verified again. 

     One can shorten the list of items needed to verify that a subset is, in 

fact, a subgroup. 

 
Proposition (4): A subset H of a group G is a subgroup if and only if H 
is nonempty and, whenever x, y ∈ H, then x y−1 ∈ H. 



 

 

Proof:    If H is a subgroup, then it is nonempty, for 1 ∈ H.  If x , y ∈ H ,  then y−1 
∈ H , by part (iii) of the definition, and so x y−1 ∈ H , by part (ii). 
Conversely, assume that H  is a subset satisfying the new condition.  Since 
H is nonempty, it contains some element, say, h. Taking x = h = y, we 
see that e = hh−1 ∈ H , and so part (i) holds. If y ∈ H , then set x = e 
(which we can now do because e ∈ H ), giving y−1 = ey−1 ∈ H , and so 
part (iii) holds. Finally, we know that (y−1)−1 = y, by. Hence, if x , y ∈ H , 
then y−1 ∈ H and so x y = x (y−1)−1 ∈ H . Therefore, H is a subgroup of 
G.  

        Since every subgroup contains e, one may replace the hypothesis 
“H is nonempty” in Proposition by “e ∈ H”. 

 
       Note that if the operation in G is added, then the proposition's 
condition is that H is a nonempty subset of G such that x, y ∈ H implies 
x- y ∈ H. 

Proposition (5): Let G be a finite group, and a  G. Then the order of a, 
is the number of elements in (a). 

Definition (6):  If G is a finite group, then the number of elements in G, 
denoted by |G|, is called the order of G. 

Definition (7): If X is a subset of a group G, such that X generates G, 

then G is called finitely generated, and G is generated by X. 

In particular, If G = ({a}), then G is generated by the subset X = {a}. 

Definition (8): 

A group G is called cyclic if G = (a); that is G can be generated by only one 

element say a, and this element is called a generator of G. 

Note that we can define cyclic subgroup as follows. 

Definition (9): If G is a group and a ∈ G, write 

} = {all powers of a}+Z∈: n n(a)= {a 

(a) is called cyclic subgroup of G generated by a. 

 

Proposition (10): The intersection of any family of subgroups is again 

subgroup. 
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Coset of sets: 

Definition (1):  If H is a subgroup of a group G and a   G, then 

the coset a H is the subset a H of G, where 

a H = {ah: h  H } 

Of course, a = ae ∈ a H. Cosets are usually not subgroups.  

  

     The cosets just defined are often called left cosets; there are 

also right cosets of H, namely,  subsets of the form  H a      {ha| 

h H};  these arise in further study of groups, but we shall work 

almost exclusively with (left) cosets. 

In particular, if the operation is addition, then the coset is denoted by 

a + H = {a + h : h  H }. 

Proposition (2): Let G be a group, and H be a subgroup of G, for any a, b  G 

we have the following: 

(i)  a H = b H if and only if b−1a  H . In particular, a H = H if 
and only if a  H. 

(ii)  If a H ∩ b H ≠∅, then a H = b H. 

(iii)  For each aG: Order of 

H is equal to the order of aH. 

Proof: 

(i)  It is clear. 

(ii) It is clear. 

(iii) The function f: H → a H which is given by f (h) = ah, is 
easily seen to be a bijective [its inverse a H → H is given by 
ah r→ a−1(ah) = h]. Therefore, H and a H have the same 
number of elements. 

 
 
 
 

Theorem (3): (Lagrange’s Theorem)  



 

 

|  | 

If H is a subgroup of a finite group G, then |H | is a divisor of 
|G|. That is: 

|G| = [G : H ]|H | 

This formula shows that the index [G : H ] is also a divisor of |G|. 

 

Corollary (4):   If H is a subgroup of a finite group G, then 

[G : H ] = |G|/|H | 

Corollary (5): If G is a finite group and a  G, then the order of a is 
a divisor of |G|. 

Corollary (6): If a finite group G has order m, then am = e for all a  G. 

Corollary (7): If p is a prime, then every group G of order p is cyclic. 

Proof: Choose a  G with a≠e, and let H = (a) be the cyclic subgroup 
generated by a. By Lagrange’s theorem, |H | is a divisor of |G| = p. 
Since p is a prime and |H | > 1, it follows that |H | = p = |G|, and so H 
= G.    

 
      Lagrange’s theorem says that the order of a subgroup of a finite 

group G is a divisor of G . Is the “converse” of Lagrange’s theorem 

true? That is, if d is a divisor of G, must there exists a subgroup of G 

having order d? The answer is “no;” We can show that the 

alternating group A4 is a group of order 12 which has no subgroup 

of order 6. 
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