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 المحاضرة الثالثة 

Homomorphism 

 

           An important problem is determining whether two 
given groups G and H are somehow the same.  

Definition (1):   If (G, *) and (H, ◦) are groups, then a function 
f: G → H is a homomorphism if: 

for all x , y  G. If f is also a bijective, then f is called an 
isomorphism. We say that G and H are isomorphic, denoted 
by G  H, if there exists an isomorphism f: G → H. 

  
Example (2): 
Let be the group of all real numbers with operation addition, 
and let R+ be the group of all positive real numbers with 
operation multiplication. The function f: R→ R+ , defined by 
f(x)=tx , where t is constant number, is a homomorphism; for if 
x , y R, then 

f (x + y) = t(x+y) = tx ty = f (x ) f (y). 

We now turn from isomorphisms to more general homomorphisms. 

 

Lemma (3): Let f: G → H be a homomorphism. 

(i) f (e) = e; 

(ii) f (x −1) = f (x)−1; 

Remark (4): 

We can show that any two finite cyclic groups G and H of the 

same order m are isomorphic. It will then follow from that any 

two groups of prime order p are isomorphic. 

 

Definition (5): 

A property of a group G that is shared by every other 
group isomorphic to it is called an invariant of G. For 
example, the order, G, is an invariant of G, for isomorphic 
groups have the same order. Being abelian is an invariant 
[if a and b commute, then ab = ba and 

 

f (a) f (b) = f (ab) = f (ba) = f (b) f (a); 



 

hence, f (a) and  f (b) commute]. Thus, M2x2 and GL(2,R) 

are not isomorphic, for is abelian and GL(2,R) is not.  

 

Definition (6): If f: G → H  is a homomorphism, define 

                           kernel f  = {x  G : f (x ) = e} 

 

and  

 

        image f  = {h  H : h = f (x ) for some x G} 

 



 

 

= = 

We usually abbreviate kernel f to ker f and image f to im f  

 
So, if f: G → H is a homomorphism, and B is a subgroup of H then f−1(B) is a 
subgroup of G containing ker f . 

Note: Kernel comes from the German word meaning “grain” or 

“seed” (corn comes from the same word).  

Its usage here indicates an important ingredient of a homomorphism, 

we give it without proof. 

Proposition (7): Let f: G → H be a homomorphism. 

(i)  ker f  is a subgroup of G and im f  is a subgroup of H . 

(ii) If x  ker f and if a  G, then ax a−1 ker f. 

(iii) f is an injection if and only if ker f = 

{e}. 

  

 

Normal Subgroups 

Definition (1):  A subgroup K of a group G is called normal, if for each k  K and 

g  G imply gkg−1 K. that is gKg-1  G for every gG. 

Definition (2): 

Define the center of a group G, denoted by Z (G), to be 

Z (G) = {z  G: zg = gz for all g  G}; 

that is, Z (G) consists of all elements commuting with every 
element in G. (Note that the equation zg = gz  can be rewritten  
as  z = gzg−1,  so that  no other elements in G are conjugate to z. 
 
Remark (3): 

Let us show that Z (G) is a subgroup of G. We can easily 
show that Z(G is subgroup of G. It is clear that Z(G)≠∅ since 1 
∈ Z (G), for 1 commutes with everything. Now, If y, z  Z (G), 
then yg = gy and zg = gz for all g  G. Therefore, (yz)g = y(zg) 
= y(gz) = (yg)z = g(yz), so that yz commutes with everything, 
hence yz  Z (G). Finally, if z  Z (G), then zg = gz for all g  
G; in particular, zg−1 = g−1 z. Therefore, 



 

 

gz−1 = (zg−1)−1 = (g−1z)−1 = z−1g 

(we are using  (ab)−1  = b−1a−1 and (a−1)−1  = a). So that Z(G) is subgroup pf G. 

Clearly che center Z (G) is a normal subgroup; since if z  Z (G) and g  
G, then 

gzg−1 = zgg−1 = z  Z (G) 

A group G is abelian if and only if Z (G) = G. At the other 
extreme are groups G for which Z (G) = {1}; such groups are 
called centerless. For example, it is easy to see that Z (S3) = {1}; 
indeed, all large symmetric groups are centerless. 

  

Proposition (4): 

(i) If H is a subgroup of index 2 in a group G, then g2  H for every g  G. 

(ii) If H is a subgroup of index 2 in a group G, then H is a 

normal subgroup of G. 

      Proof: 

(i) Since H has index 2, there are exactly two cosets, namely, 
H and a H, where a G\H. Thus, G is the disjoint union G = H 
a H. Take g  G with g ∉H. So that g = ah for some h  H. If 
g2 ∉ H, then g2 = ah1, where h1  H . Hence, 

g = g−1 g2 = (ah)−1a h1 = h−1a−1a h1 = h−1 h1 H, 

and this is a contradiction. 
(ii) It suffices to prove that if h  H , then the conjugate ghg−1    H  for 

every 
g ∈ G. Since H has index 2, there are exactly two cosets, namely, H and a 
H, 
where a  ∉ H. Now, either g H or g a H. If g H, then ghg−1H, 

because H is a subgroup. In the second case, write g = ax, where x  H. 
Then 
ghg−1 = a(x hx −1)a−1 = ahIa

−1, where hI = x hx −1   H (for hI is a product 

of three elements in  H ).  If ghg∉ H, then ghg−1  = ahIa
−1    a H ; that is, 

ahIa
−1 = ay for some y   H. Canceling a, we have hIa−1 = y, which gives 

the contradiction a = y−1hI   H. Therefore, if h   H, every conjugate of h 

also lies in H; that is, H is a normal subgroup of G.   

Proposition(5): If K is a normal subgroup of a group G, then 

bK = K b 



 

 

for every b   G. 

 

Proof: We must show that bK  Kb and Kb  bK. So if 
bkbK, then clearly bK = bKb-1b. 

Since bKb-1K, then bKb-1= k1 for some k1K. This implies 
that bKKb. Similarity for the other case. Thus bK = Kb. 
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