المحاضرة الثالثة

Homomorphism

An important problem is determining whether two given groups G and H are somehow the same.

Definition (1): If $(G, *)$ and (H, \circ) are groups, then a function f: $G \rightarrow H$ is a homomorphism if:

for all $x, y \in G$. If f is also a bijective, then f is called an isomorphism. We say that G and H are isomorphic, denoted by $G \cong H$, if there exists an isomorphism f: $G \rightarrow H$.

Example (2):

Let be the group of all real numbers with operation addition, and let R^+ be the group of all positive real numbers with operation multiplication. The function f: $R \rightarrow R^+$, defined by $f(x)=tx$, where t is constant number, is a homomorphism; for if $x, y \in R$, then

 $f(x + y) = t(x+y) = tx$ ty = f (x) f (y).

We now turn from isomorphisms to more general homomorphisms.

Lemma (3): Let f: $G \rightarrow H$ be a homomorphism.

(i) $f(e) = e$; (ii) $f(x^{-1}) = f(x)^{-1}$;

Remark (4):

We can show that any two finite cyclic groups G and H of the same order m are isomorphic. It will then follow from that any two groups of prime order p are isomorphic.

Definition (5):

group isomorphic to it is called an *invariant* of G. For A property of a group G that is shared by every other example, the order, G, is an invariant of G, for isomorphic groups have the same order. Being abelian is an invariant [if a and b commute, then $ab = ba$ and

f (a) $f (b) = f (ab) = f (ba) = f (b) f (a);$

hence, f (a) and f (b) commute]. Thus, M_{2x2} and $GL(2,R)$ are not isomorphic, for is abelian and GL(2,R) is not.

Definition (6): If f: $G \rightarrow H$ is a homomorphism, define

kernel $f = \{x \in G : f(x) = e\}$

and

$$
image f = \{ h \in H : h = f(x) \text{ for some } x \in G \}
$$

Prof. DR. Muta Hobas Hitled

We usually abbreviate kernel f to ker f and image f to im f

So, if f: G \rightarrow H is a homomorphism, and B is a subgroup of H then f⁻¹(B) is a subgroup of G containing ker f .

Note: Kernel comes from the German word meaning "grain" or "seed" (corn comes from the same word).

Its usage here indicates an important ingredient of a homomorphism, we give it without proof.

Proposition (7): Let f: $G \rightarrow H$ be a homomorphism.

- **(i)** ker f is a subgroup of G and im f is a subgroup of H .
- (ii) If $x \in \text{ker } f$ and if $a \in G$, then ax $a^{-1} \in \text{ker } f$.
- (iii) f is an injection if and only if ker $f =$
	- ${e}.$

Normal Subgroups

Definition (1): A subgroup K of a group G is called normal, if for each $k \in K$ and $g \in G$ imply $gkg^{-1} \in K$. that is $gKg^{-1} \subset G$ for every $g \in G$.

Definition (2):

Define the center of a group G, denoted by $Z(G)$, to be

 $Z(G) = \{z \in G : zg = gz \text{ for all } g \in G\};$

element in G. (Note that the equation $zg = gz$ can be rewritten that is, $Z(G)$ consists of all elements commuting with every as $z = g z g^{-1}$, so that no other elements in G are conjugate to z.

Remark (3):

Let us show that $Z(G)$ is a subgroup of G. We can easily show that $Z(G)$ is subgroup of G. It is clear that $Z(G) \neq \emptyset$ since 1 \in Z (G), for 1 commutes with everything. Now, If y, z \in Z (G), then $yg = gy$ and $zg = gz$ for all $g \in G$. Therefore, $(yz)g = y(zg)$ $= y(gz) = (yg)z = g(yz)$, so that yz commutes with everything, hence $yz \in \widetilde{Z}(G)$. Finally, if $z \in \widetilde{Z}(G)$, then $zg = gz$ for all $g \in$ G; in particular, $zg^{-1} = g^{-1}z$. Therefore,

$$
gz^{-1}=(zg^{-1})^{-1}=(g^{-1}z)^{-1}=z^{-1}g
$$

(we are using $(ab)^{-1} = b^{-1}a^{-1}$ and $(a^{-1})^{-1} = a$). So that Z(G) is subgroup pf G.

Clearly che center Z (G) is a normal subgroup; since if $z \in Z$ (G) and $g \in$ G, then

$$
gzg^{-1} = zgg^{-1} = z \in Z(G)
$$

A group G is abelian if and only if $Z(G) = G$. At the other extreme are groups G for which $\mathcal{Z}(G) = \{1\}$; such groups are called centerless. For example, it is easy to see that $Z(S_3) = \{1\}$; indeed, all large symmetric groups are centerless.

Proposition (4):

(i) If H is a subgroup of index 2 in a group G, then $g^2 \in H$ for every $g \in G$.

(ii)If H is a subgroup of index 2 in a group G, then H is a

normal subgroup of G.

Proof:

(i) Since H has index 2, there are exactly two cosets, namely, H and a H, where $a \in G\backslash H$. Thus, G is the disjoint union $G = H$ \bigcup_{α} H. Take $g \in G$ with $g \notin H$. So that $g = ah$ for some $h \in H$. If $g^2 \notin H$, then $g^2 = ah_1$, where $h_1 \in H$. Hence,

$$
g = g^{-1} g^2 = (ah)^{-1} a h_1 = h^{-1} a^{-1} a h_1 = h^{-1} h_1 \in H,
$$

and this is a contradiction.

(ii) It suffices to prove that if $h \in H$, then the conjugate ghg⁻¹ \in H for every g ∈ G. Since H has index 2, there are exactly two cosets, namely, H and a H, where a ∉ H. Now, either g ∈ H or g ∈ a H. If g ∈ H, then ghg⁻¹ ∈ H, because H is a subgroup. In the second case, write $g = ax$, where $x \in H$. Then $g h g^{-1} = a(x h x^{-1}) a^{-1} = a h_I a^{-1}$, where $h_I = x h x^{-1} \in H$ (for h_I is a product

of three elements in H). If ghg∉ H, then ghg⁻¹ = ah_Ia⁻¹ ∈ a H; that is,

 $ah_{I}a^{-1}$ = ay for some $y \in H$. Canceling a, we have $hIa^{-1} = y$, which gives the contradiction $a = y^{-1}h_I \in H$. Therefore, if $h \in H$, every conjugate of h also lies in H; that is, H is a normal subgroup of G.

Proposition(5): If K is a normal subgroup of a group G, then

$$
bK=K\;b
$$

for every $b \in G$.

Proof: We must show that $bK \subseteq Kb$ and $Kb \subseteq bK$. So if $\overline{bk} \in b\overline{K}$, then clearly $bK = bKb^{-1}b$.

Since $bKb^{-1} \in K$, then $bKb^{-1} = k_1$ for some $k_1 \in K$. This implies that $bK \in Kb$. Similarity for the other case. Thus $bK = Kb$.

References

1. D. M. Burton, Abstract and linear algebra, 1972.

2. Joseph J. Rotman, Advanced Modern Algebra, 2003.

- **3.** John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, 2002.
- **4**. Joseph A. Gallian, Contemporary Abstract Algebra, 2010.