FLUID, ELECTROLYTES & ACID-BASE BALANCE

Assisstant Professor Raed E. Rassam Department Of Surgery

Learning objectives:

- 1. To describe fluid, electrolytes and acid base disturbances.
- 2. To be able to calculate fluid and electrolytes maintenance requirements.
- 3. To be able to calculate fluid and electrolytes deficit requirements.
- 4. To be able to supplement postoperative parenteral fluid therapy; its routes and types, restrictions and complications.
- 5. To describe different types of acid base disturbances and their management.

Lecture outlines:

- 1. Water balance (depletion and intoxication).
- 2. Electrolyte balance (sodium balance, hypokalaemia, calcium balance and magnesium balance).
- 3. Parenteral fluid therapy.
- 4. Acid-base balance (respiratory and metabolic)

WATER BALANCE

DAILY WATER BALANCE OF 70 KG HEALTHY ADULT

2-3L. \24h. INTAKE	2-3L. \24h. OUTPUT
1200 ml. BEVERAGGE	1500 ml. URINE
	500+400 FROM SKIN & LUNG
300-500 ml.OXIDATION	100 ml. FAECES

WATER DEPLETION

- Pure Water Depletion; As In Tracheostomy.
- Thirst, U.O↓,Sp. Gravity↑,pcv↑,s.Na+↑,bl. Urea↑.
- Relative Water Depletion; As In Diabetes Incipidus, After Head Injury, Diuretic Phase Of Acute Renal Failure, After Renal Transplantation.
- Treatment By Oral Fluid Or I.V. 5% Glucose Or Saline.

WATER INTOXICATION

- Excessive Water Or Hypotonic Solutions Taken Orally, I.V., S.C., Rectally Or Transurethrally Also ADH-secreting Tumurs As Oat-cell Ca Of Bronchus.
- Vomit Clear Fluid, Mcv↑,pcv↓,s.Na⁺↓,bl. Urea↓.
- Treatment By Stop Water Intake Or I.V. Appropriate Fluid Under CVP Control
- WATER EXCESS(L.)={0.6B.W.(KG)×(140-S.Na+)} | 140

ELECTROLYTE BALANCE

SODIUM BALANCE

- TOTAL BODY Na+ 5000 MMOL 44% EXTRACELLULAR 9% INTRACELLULAR 47% IN BONE
- AVERAGE DAILY INTAKE 80-100MMOL OR 570ML. ISOTONIC SALINE
- **EXCRETED IN URINE, FAECES & PERSPIRATION**
- CONTROL BY ALDOSTERONE
- WITH CL⁻ & HCO₃⁻ MAKE 90% OF PLASMA OSMOTIC PRESSURE
 - $S.Na^{+} = 137-147 \, MMOL/L.$
 - S. $CL^{-} = 95-105 \text{ MMO/ L}$.
 - S. $HCO_3^- = 25-30 \text{ MMOL.}/L.$
 - S. CL $^{-}$ + S. HCO $_{3}^{-}$ = 120-135 MMOL./ L.

SODIUM DEPLETION (HYPONATRAEMIA):-

CAUSES:-

- LOSS FROM GIT DUE TO ANY CAUSE.
- ADRENAL INSUFFICIENCY.
- INAPPROPRIATE SECRETION OF ADH AS IN BRONCHIAL CA., ELDERLY WITH ACUTE SURGICAL STRESS, OR HEAD INJURY.
- POSTOPERATIVE HYPONATRAEMIA; IF CONTINUE GIVE FLUID WITHOUT SODIUM FOR > 48 H. AS THE POSTOPERATIVE NateXCRETION SHUTDOWN ENDS.

SODIUM DEPLETION (HYPONATRAEMIA):-

- CLINICAL FEATURES :- NO THIRSTY HERE (UNLIKE WATER DEPLETION)
- PCV GOOD INDICATOR OF DEHYDRATION IF Hb NORMAL BEFORE DEHYDRATION, S. Na⁺↓, U.O.P.↓, URINARY Na⁺↓.
- TREATMENT:- I.V. 0.5-2 L. ISOTONIC SALINE OR RINGER SOLUTION (PREVENTING HYPOPROTEINAEMIA) OR PLASMA OR ITS SUBSTITUTE IN SEVERE CASES.
- Na+ DEFICIT (mEq)=0.6B.W.(Kg)×(140 S.Na+)

SODIUM EXCESS (HYPERNATRAEMIA):-

- GIVE ISOTONIC SALINE EARLY POSTOPERATIVELY
- PUFFY FACE, OEDEMA AFTER 4.5 L. FLUID EXCESS, INCREASE WEIGHT, ELEVATED ANTERIOR FONTANELLE IN INFANTS
- TREAT BY STOP INFUSION OR AS PULMONARY OEDEMA

POTASSIUM BALANCE

- TOTAL BODY POTASSIUM IS 3500mmol.
- 3/4 OF IT IS IN SKELETAL MUSCLES
 98% INTRACELLULAR
 2 % EXTRACELLULAR
- ADULT DAILY INTAKE IS 52-78mmol.
- NORMAL S. POTASSIUM 3.5-5 mmol.\l.
- LOW INTRACELLULAR POTASSIUM MAY BE PRESENT WITH NORMAL S. POTASSIUM SO HYPOKALAEMIA ANTICIPATED IF ORAL INTAKE STOPPED FOR 4 DAYS.

POTASSIUM DEPLETION (HYPOKALAEMIA):-

CAUSES:-

- SUDDENLY; IN DIABETIC COMA TREATED WITH INSULIN & SALINE INFUSION
- GRADUALLY; IN DIARRHOEA, EXTERNAL GI FISTULAE, PROLONGED GASTRIC ASPIRATION + SALINE INFUSION, EXTENSIVE GI RESECTION FOR CA.

POTASSIUM DEPLETION (HYPOKALAEMIA):-

- **CLINICAL FEATURES:-**
- TREATMENT :- ORAL 2gm kcl 6-HOURLY
 - I.V. POTASSIUM (U.O.P > 1000ml./ 24h. OR 40ml. /h.)
 WHEN NO ASSOCIATED
 ALKALOSIS GIVE 20mmol.
 KCL\L. OF 0.9% SALINE OR 5%
 DEXTROSE.

• 0.1 FALL IN PH CAUSE 0.6mEq RISE IN PLASMA POTASSIUM & VICE VERSA *

CALCIUM:-

- EXTRACELLULAR CATION
- PLASMA CALCIUM 2.2-2.5 mmol.\l.

PROTEIN BOUND

FREE NON-IONISED

FREE IONISED; WHICH FALLS WITH ALKALOSIS IN BLOOD OR URINE

- CALCIUM LEVEL AFFECTED BY <u>VIT D</u>, <u>PHYTIC ACID</u>, <u>PARATHORMONE</u> & <u>CALCITONIN</u> & <u>STATE OF RENAL</u> & <u>SMALL BOWEL FUNCTION</u> ALSO <u>IN MASSIVE BLOOD</u> TRANSFUSION.
- TREAT HYPERCALCAEMIA BY REMOVE PARATHYROID TUMOUR.
- TREAT HYP<u>O</u>CALCAEMIA GIVING 10ml. OF 10% CALCIUM GLUCONATE I.V. SLOWLY,ORAL CALCIUM, ASPIRIN, HIGH CALCIUM LOW PHOSPHATE FOOD.

MAGNESIUM:-

- INTRACELLULAR CATION
- 0.7-0.9mmol./l.
- AVERAGE DAILY INTAKE 10 mmol.
- DEFICIENCY OCCUR IN DIARRHOEA, GI FISTULAE, CIRRHOSIS, PARATHYROID DISEASES, PROLONGED I.V. FLUID THERAPY WITHOUT MAGNESIUM SUPPLEMENT.
- CLINICAL FEATURES OF CNS IRRITABILITY, ECG CHANGES, LOW B.P., LOW PROTEIN SYNTHESIS.
- TREAT BY 40mmol. MAGNESIUM SULPHATE IN 5% DEXTROSE OR SALINE OVER 24h.

■ ADMINISTRATION OF FLUID BY ROUTES OTHER THAN GIT AS I.V., I.M., S.C., OR TO BONE MARROW.

TYPES OF FLUIIDS :-

- 1. PLASMA, ALBUMIN 4.5% 10% or 25%, DEXTRANS & GELATIN
- 2. 5% DEXTROSE
- 3. 0.9% ISOTONIC SALINE(153,153)
- 4. 4% DEXTROSE IN 0.18% SALINE(1/5 DEXTROSE SALINE)
- 5. RINGER'S LACTATE SOLUTION(130,4,110,28)
- 6. DARROW'S SOLUTION(124,36,104,56)

I.V. FLUID THERAPY REGIME:-

- 1st 24h. AFTER SURGERY 2L. 5% DEXTROSE 2nd 24h. 2L. DEXTROSE + 1L. 0.9% SALINE 3rd24h. 2L. 5% DEXTROSE +1L. 0.9% SALINE + 20mmol. KCL IN EACH LITER OR
- 3L. OF 1/5 DEXTROSE SALINE DAILY +20mmol. KCL ON 3rd POSTERATIVE DAY IN EACH LITER

- CONTRAINDICATIONS ARE HEART FAILURE & PULMONARY CONGESTION ON CXR
- IN DEHYDRATION
- IN SHOCK
- IN INFANTS WITH DEHYDRATION (1gm BODY WEIGHT = 1ml FLUID)
- CHARTING
- CLINICAL MONITORING
- HAEMATOLOGICAL BIOCHEMICAL MONITORING
- PATIENT SUBSISTING TOTALLY ON PARENTERAL FLUID LOSE DAILY 150gm. WEIGHT
- TWIN AMPOULES OF PARANTROVIT SHOUD BE GIVEN WEEKLY
- PROCTOCLYSIS (1PINT SALINE + 4PINTS TAP WATER NOT FASTER THAN 50 DROPPS \ MIN.)

ACID-BASE BALANCE:-

- NORMAL BLOOD PH = <u>7.36 7.44</u>
- $HCO_{3}^{-}: H_{2}CO_{3} = 20:1$
- HCO3- ALTERED BY METABOLIC FACTORS, WHILE H2CO3 ALTERED BY RESPIRATORY FACTORS
- PCO₂ = <u>31-41 mmHg</u>
- $PO_2 = 80-110 \text{ mmHg}$
- STANDARD HCO₃⁻ (22- 25 meq/l.)
- BASE EXCESS OR BASE DEFICIT (+2.5)
- TOTAL EXTRACELLLAR BASE EXCESS OR BASE DEFICIT (mmol.) = BASE EXCESS OR BASE DEFICIT
 × 0.3 BODY WEIGHT IN Kg
- Po₂ & Pco₂ Changes Indicate Respiratory Causes While Standard Hco₃- & Base Excess or Base Deficit Changes Indicate Metabolic Causes

ALKALOSIS:-

■ METABOLIC ALKALOSIS :-

CAUSES:

COMPENSATION:

*** 1mEq RISE IN HCO3 CAUSE 0.5-1mmHg
RISE IN PCO2 *

CLINICAL FEATURES:

HYPOKALAEMIC ALKALOSIS OR (PARADOXICAL ACIDUREA):

O.1 FALL IN PH CAUSE 0.6mEqL. RISE IN PLASMA POTASSSIUM & VICE VERSA *

ALKALOSIS:-

RESPIRAORY ALKALOSIS :-

PCO₂ < 31 mmHg

CAUSES:

COMPENSATION:

IN ACUTE RESPIRATORY ALKALOSIS: 10mmHg DROP IN PCO2 CAUSE 2.5mEq\L. DROP IN HCO3 WHICH IF < 18 IS NOT DUE TO ACUTE RESPIRATORY FAILURE ALONE *

IN CHRONIC RESPIRATORY ALKALOSIS: 10mmHg DROP IN PCO2 CAUSE 5mEqIL. DROP IN HCO3 WHICH IF < 12 IS NOT DUE TO CHRONIC RESPIRATORY ALKALOSIS ALONE *

CLINICAL FEATURES :(DURING ANAESTHESIA) TREATMENT :

ACIDOSIS:-

■ METABOLIC ACIDOSIS :-

Causes: Loss Of Base

Increase In Fixed Acids

Clinical Features:

Compensation:

⊕ 1meq FALL IN HCO₃ CAUSE 1-1.5 mmHg FALL IN PCO₂*

Treatment:

hco3 Deficit(meq)=0.5b.W.(Kg)×(24 - PLASMA HCO3)

THE ANION GAP:-

- ANION GAP = $(Na^+ + K_+)$ $(HCO_{3^-} + CI^-)$ = 10-16 mmol./ |.
- INCREASE ANION GAP IN KETOACIDOSIS, LACTIC ACIDOSIS, SALICILATE POISONING & RENAL FAILURE.
- NORMAL ANION GAP IN RENAL TUBULAR ACIDOSIS, DIARRHOEA, INTESTINAL OBSTRUCTION OR FISTULA, HYPERCHLORAEMIC ACIDOSIS OF URETEROCOLIC ANASTOMOSIS.

ACIDOSIS:-

■ RESPIRATORY ACIDOSIS :-

 $PCO_2 > 41 mmHg$

CAUSES:

COMPENSATION:

IN ACUTE RESPIRATORY ACIDOSIS: 10mmHg RISE IN PCO₂ CAUSE 1meq\l. Rise In Hco₃ Which If > 30 Is Not Due To Acute Respiratory Acidosis Alone *

IN CHRONIC RESPIRATORY ACIDOSIS: 10mmHg Rise In

Pco, Cause 3.5meg II. Rise In Hco; *

References

- 1. Bailey & Loves short practice of surgery 23rd edition
- 2. Current emergency diagnosis and treatment, middle east edition 1983