Let H_1 and H_2 be two subgroups of a group G, then $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$ if and only if $H_1 \cup H_2$ is a subgroup.

Proof:

If $H_1 \subseteq H_2$, then $H_1 \cup H_2 = H_2$ H_2 is subgroup, hence $H_1 \cup H_2$ is subgroup.

$$\Leftarrow$$
) we must show $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$ suppose $H_1 \not\subseteq H_2$ or $H_2 \not\subseteq H_1$. $H_1 \& H_2 \Rightarrow \exists a \in H_1 \& a \& H_2$ $H_2 \& H_1 \Rightarrow \exists b \in H_2 \& b \notin H_1$ $a, b \in H_1 \cup H_2$ But $H_1 \cup H_2$ is subgroup, thenab $b^{-1} \in H_1 \cup H_2$. So either $ab^{-1} \in H_1$, $ab^{-1} = h_1$ where $h_1 \in H_1 \Rightarrow h_1^{-1}a = b \in H_1 C$! $h_2b = a$

or
$$ab^{-1} \in H_2$$
, $ab^{-1} = h_2$ where $h_2 \in '2 \Rightarrow h_2^{-1}a \le$

Definition:

Let H be a subgroup of a group G, then H is called a proper subgroup of G if $H \neq G$.

Corollary:

A group G cannot be the union of two of its proper subgroups.

Proof:

Let H_1 and H_2 be two proper subgroups i.e., $H_1 \neq G$ and $H_2 \neq G$ Suppose $H_1 \cup H_2 = G$, then by theorem $[H_1 \subseteq H_2 \text{ or } H_2 \subseteq H_1 \Leftrightarrow H_1 \cup H_2 \text{ is subgroup}]$ If $H_1 \subseteq H_2$, then $H_1 \cup H_2 = H_2 = G$ C! $[Since H_2 \neq G]$. If $H_2 \subseteq H_1$, then $H_1 \cup H_2 = H_1 = G$ C! \sim Since $H_1 \neq G$.

Exampl:

Let
$$G = \{e, b, c, a\}, \forall a \in G, a^2 = e$$

$$H_1 = \{e, a\}, H_2 = \{e, b\}, H_3 = \{e, c\}.$$

Definition:

Let G be a group, then Cent $G = \{a \in G : ax = xa, V'x \in G\}$ the Cent G is called the center of G.

Remark:

- (1) Cent $G \# \emptyset [e \in \text{Cent } G]$
- (2) Cent $G = G \Leftrightarrow G$ is abelian.

Example:

Gent-GS = $\{\sum, T_2\}$

Cent
$$S_3 = \{\alpha_1\}$$

Theorem:

Let G be a group, then Cent G is subgroup.

Proof:

Cent $G \neq \emptyset$

$$[e \in \text{cent } u]$$

Let $a, b \in \text{Cent}G$, then $ax = xa \forall x \in G$ and $bx = xb \forall x \in G$ We must show that $ab^{-1} \in \text{Cent } G$ i.e $x(ab^{-1}) = (ab^{-1})x$

$$x(ab^{-1}) = (xa)b^{-1} = (ax)b^{-1}$$

$$= a(xb^{-1}) = a(bx^{-1})^{-1}$$

$$= a(x^{-1}b)^{-1} = ab^{-1}(x^{-1})^{-1}$$

$$= (ab^{-1})x$$

Definition:

Let S be a non empty subset of G, then the intersection of all subgroups of G containing S is denoted by $\langle S \rangle$ which is called the subgroup generated by S.

$$\langle S \rangle = \cap \{H : H \text{ is subgroup of } G, H \supseteq S\}$$

$$S \subseteq \langle S \rangle$$

 $\langle S \rangle \neq \emptyset$ [G is subgroup containing S]

 $\langle S \rangle = S$ if and only if \mathfrak{S} is subgroup

Definition:

Let S be a non empty subset of G if S is finite, and then $\langle S \rangle$ is called finitely generated. In particular if $S = \{a\}$. Then $\langle S \rangle = \langle a \rangle$ is called cyclic subgroup.

$$\langle a \rangle = \{ na : n \in Z \}$$

$$S = \{1\}$$

$$\langle 1 \rangle = \{ 0,1,2,3,4, \dots \\ -1,-2,-3,-4, \dots \}$$

Definition:

A group G is said to be cyclic with generator a if $G = \langle a \rangle$ for some $a \in G$.

Example:

The group $(Z_6, +_6)$ is cyclic. Sol:

$$<\overline{1}>=\{\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{0}\}$$

$$<\overline{2}>=\{\overline{2},\overline{4},\overline{0}\}=<\overline{4}>=\{\overline{4},\overline{2},\overline{0}\}$$

$$<\overline{3}>=\{\overline{3},\overline{0}\}=<\overline{5}>=\{\overline{5},\overline{4},\overline{3},\overline{2},\overline{1},\overline{0}\}$$

$$Z_{6}=<\overline{1}>$$

Example:

Is $Z = \langle 1 \rangle$? To prove $2 \leq <1 \rangle$ First $\langle 1 \rangle \subseteq Z, k1 \rangle = \{n. 1: n \in Z\}$, so that 數

Hetes
$$n = \underbrace{1 + 1 + \dots + 1}_{\text{n tims}} = 1^n$$

Hence $n \in <1>$ and $Z \subseteq <1>$ Thus $Z = \langle 1 \rangle$.

Example:

 $G = \{e, b, c, a\}, \forall a \in G, a^2 = e, G \text{ is called Klein 4-group, is not cyclic.}$

$$b^{2} = e, c^{2} = e$$

* | e | a | b | c

e | e | a | b | c

a | a | e | c | b

b | b | c | c | a

c | c | b | a | e

$$\langle e \rangle = \{e\} \neq G$$

 $\langle a \rangle = \{e, a\} \neq G$
 $\langle c \rangle = \{e, c\} \neq G$

Example:

Let G be a group, $H = \{a \in G : a^k = e, k \in Z\}$, then H is subgroup. Solution: $H \not\subset \emptyset$ since at least $e \in H$. Let $a, b \in H$, i.e $\exists k \in Z$ such that $a^k = e$ $\exists n \in Z$ such that $b^n = e$ We have to prove $a * b^{-1} \in H$ i.e., $(a * b^{-1})^m = e$; $m \in Z$ $(a * b^{-1})^{kn} = a^{kn} * (b^{-1})^{nk} = a^{kn} * (b^n)^{-k} = e^n * e^{-k} = e$ Hence $a * b^{-1} \in H_{;}(m = kn)$. Thus H is subgroup.

Remark:

Let *G* be a group and let $a \in G$, then: $\langle a \rangle = \{a^0, a^1, a^2, ..., a^{-1}, a^{-2}, ...\} = \{a^n : n \in Z\}.$

Theorem:

Every cyclic group is abelian. Proof: Let G be a cyclic group, $\Rightarrow G = \langle a \rangle$ let $x, y \in G$, $x = a^n$, $y = a^m$; $m, n \in Z$ $xy = a^n a^m = a^{n+m} = a^{m+n} = yx$ The converse is not true.

Example:

(Klein 4-group) is abelian but not cyclic.

Definition:

The order of G denoted by O(G) is the number of element of G if G is is infinite then we say that G has infinite order.

Theorem:

Let $G = \langle a \rangle$ be a finite group with O(G) = n, then:

$$G = \{e, a, a^2, \dots, a^{n-1}\}$$

Proof: Since $a \in G$ and G is group, then $a, a^2, a^3, ... \in G$ But G is finite, so $\exists k, J \in Z_+$ such that $a^k = a^J$ and k > J $\Rightarrow a^{k-J} = e$ with k-J > 0ie., the set of positive integers t such that $a^t = e$ is not empty By the well ordering principle let m be the smallest positive integer such that $a^m = e$ Let $S = \{e, a, a^2, ..., a^{m-1}\}$ all element of S are distinct [if $a^\ell = a^k;$ $0 \le \ell < k < m-1]$, implies $a^{k-\ell} = eC$!, since m is the smallest one let $m \in G$, then $m = a^r; r \in Z$ Now m, m by the division algorithm theorem