since n is Char R.

$$\Leftrightarrow$$
 Let $a \in R$, na = n.1. $a = 0 \cdot a = 0$

 \therefore Char R = n since n is the smallest positive integer, n. l = 0.

Corollary: Let R be an integral domain then Char R is either zero or prime integer.

Proof: Suppose Char R > 0 suppose $n = n_1 \cdot n_2$, $l < n_1 \le n_2 < n$ n. a = 0 (n is the smallest positive int.)

$$(n_1 \cdot n_2)a = (n_1 \cdot 1) \cdot (n_2 \cdot 1) \cdot a[R \text{ integral domain }]$$

but R is integral domain then either n_1 . 1=0 or n_2 . 1=0C! by theorem) since n_1 , $n_2 < n$ and n is the smallest integer such that n. I=0. l is a prime integer.

Definition: Let R and R' be rings, $f: R \to R'$, then f is a ring homomorphism if

(1)
$$f(a + b) = f(a) + f(b)$$

$$(2) f(a \cdot b) = f(a) \cdot f(b).$$

Example:

- (1) Let $\emptyset: R \to R'$, $\emptyset(r) = ($ is a ring homo. called zero homo.
- (2) I: $R \rightarrow R$, I(r) = r the identity homo.

(3)
$$h: Z \to Z_n$$
, $h(n) = \overline{\mathbf{n}}$

Definition: Let $f: R \to R'$ be a ring homomorphism.

if f is one to one then fis monomorphism. .1

if f is onto then f is epimorphism. .2

f is (1,-1) and onto then f is isomorphism. .3

Definition: if f: $R \to R'$ and f is isomorphism then we say that R is isomorphic to R', $R \simeq R'$.

Remark: if $f: R \to R'$, f is homomorphism, then:

$$f(O_R) = O_{\dot{R}}$$
. .1

$$f(-a) = -f(a)$$
. .2

 $f(l_R) = 1_R$ when R and R' is a ring with identity. .3

Theorem: Any ring can be imbedded in a ring with identity.

Proof: Let $R \times Z = \{(r, n), r \in R, n \in Z\}$

Define + and . on $R \times Z$ as follows

$$(r,n) + (t,m) = (r + t, n + m)$$

 $(r,n). (t,m) = (rt + nt + mr, nm)$

then $R \times Z$ is a ring with identity (0,1).

$$(r,n) \cdot (0,1) = (r,n)$$

 $R \times \{0\} \subseteq R \times Z$

Now we must show that $R \times \{0\}$ is subring of $R \times Z$

$$(a,0)\{\in R \times \{0\}\} - (b,0)\{\in R \times \{0\}f = (a-b,0) \in R \times \{0\}\}$$

 $(a,0).(b,0) = (ab,0) \in R \times \{0\}$

Now we define a map $\emptyset: R \to R \times \{0\}, \emptyset(r) = (r, 0)$

(1) Let
$$\emptyset(\mathbf{r}_1) = \emptyset(\mathbf{r}_2)$$

$$(r_1, 0) = (r_2, 0) \Rightarrow r_1 = r_2 : \emptyset \text{ is } (1 - 1)$$

(2) let $(w, 0) \in \mathbb{R} \times \{0\}$, $\therefore \emptyset(w) = (w, 0) \therefore \emptyset$ is onto, \emptyset is homo.

(3)
$$\emptyset(r_1 + r_2) = (r_1 + r_2, 0) = (r_1, 0) + (r_2, 0) = \emptyset(r_1) + \emptyset(r_2)$$

$$\emptyset(r_1 \cdot r_2) = (r_1 r_2, 0)
\emptyset(r_1) \cdot \emptyset(r_2) = (r_1, 0) \cdot (r_2, 0) = (r_1 r_2, 0)
\therefore R \cong R \times \{0\}$$

 \therefore R is imbedded in a ring R \times Z.

Definition: Let R be a ring an element $a \in R$ is said to be idempotent element if $a^2 = a$. And a is nilpotent if there exists an integer n such that $a^n = 0$.

Example: (1) $Z_6 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}}$

Solution: $\overline{0}$, $\overline{1}$, $\overline{3}$, $\overline{4}$ are idempotent. $\overline{0}$ is nilpotent only.

(2)
$$Z_8 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}}$$

Solution: $\overline{0}$, $\overline{2}$, $\overline{4}$, $\overline{6}$ are nilpotent.

(3) Z_5 : the idempotent $\overline{0}$, $\overline{1}$ and nilpotent is $\overline{0}$.

(4)
$$(p(x), \Delta, \cap)$$

Solution: $A \cap A = A$, $\forall A$ is idempotent $A \cap ... \cap A = \emptyset$, just when $A = \emptyset$

Definition: Let R be a ring such that every element of R is idempotent then R is Boolean ring.

Example : in
$$Z_2 = \{0,1\}, (\overline{0})^2 = 0, (\overline{1})^2 = 1.$$

Theorem: Let R be a ring such that every element in R is idempotent (R is Boolean ring), then R is commutative.

Proof:
$$(a + b) = (a + b)^2 = (a + b)(a + b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b$$

$$a + b = a^{2} + a \cdot b + b \cdot a + b^{2}$$

$$a + b = a + b + a \cdot b + b \cdot a$$

$$0 = ab + ba \Rightarrow ab = -ba$$

$$ab = (-ba) = (-ba)^2 = b^2a^2 = ba$$

∴ R is commutative.

Remark: Let R be a ring commutative if there exists element $a \in R$, such that:

- (1) a is idempotent.
- (2) a is not zero divisor. Then a must be the identity of the ring.

Proof: (2) Let $b \in \mathbb{R}$

$$a \cdot b = a^2 b \Rightarrow (a^2 \cdot b) - a \cdot b = 0$$

 $a(ab - b) = 0[a \text{ is not zero divisof}]$

$$\therefore$$
 ab $-$ b $=$ 0 \Rightarrow ab $=$ b

 \therefore a is identity.

Example: Consider the ring $(p(x), \Delta, \cap)p(x) = \{A: A \subseteq X\}$, for a fixed subset $S \subseteq X, S \in p(x)$, define $f: p(x) \to p(x)$

$$f(A) = A \cap S$$

$$(1) A = B \Rightarrow A \cap S = B \cap S$$

$$f(A) = f(B) \cdot f$$
 is well define

(2)
$$(A\Delta B) = f(A)\Delta f(B)$$
?