Group Theory

Definition:

Let S be a non empty set, any function form the Cartesian product $S \times S$ into S is called a binary operation on S.

Definition:

If * is binary operation on a set S and $A \subseteq S$, the subset A is closed under * if $a * b \in A$, where a and b are in A.

Examples:(1)on Z, +

$$+: Z \rightarrow Z; +(a,b) = a+b$$

 $Z \rightarrow Z; \cdot (a,b) = a \cdot b$

also is a binary operation

(2) If P(A) is denoted the power set of fixed set A, then both u, n are binary operation on p(A).

(3) On^+ , the subtraction is not closed on Z^+

(4) $S = \{1, -1, i, -i\}$ with $i^2 = -1$, then - is a binary operation on S

(5) $(Z_e, +)$ is a group under a binary operation +

 $(Z_0, +)$ is not closed under addition

Definition:

A group is a pair (G,*) consisting of nonempty set G and a binary operation * define on G satisfying.

1 - G closed under operation*.

2-*Is associative (a * b) * c = a * (b * c) for all $a, b, c \in G$

3-There exist $e \in G$ (the identity element) such that a * e = e * a = a, for all $a \in G$

4-For all $a \in G$ there exists an inverse a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Definition:

The binary operation * on set S is called commutative if $\alpha * b = b * \alpha$.

1

Examples:

1- (Z, +), (R, +), (C, +) Are associative groups. 2-Let a be any non zero real number $0 \neq a \in R$, $G = \{na: n \in Z\}$, (G, +) is group 3- (P(A), n), $(P(A), \cup)$ are not groups. Solution:

$$A \cup \phi = A$$
$$A \cap X = A$$

But the system has no invers.

Thus we define other operation,

$$A\Delta B = (A - B) \cup (B - A); A, B \in P(A)$$

$$A\Delta \phi = (A - \phi)_{\cup}(\phi - A) = A_{\cup}\phi = A$$

$$A\Delta A = (A - A)_{\cup}(A - A) = \phi_{\cup}\phi = \phi$$

Thenall $A \in P(A)$ has inverse. So $(P(A), \Delta)$ is group

Definition:

Let (G,*) be a group, G is called abelian group if a*b=b*a for all a,b in G

Example:

 $(P(A), \Delta)$ and (Z, +) are abeliangroup.

Examples:

(1) Let $G = \{(a, b): a, b \in R, a \neq 0\}$. Define* on G as: (a, b) * (c, d) = (ac, bc + d), (G, *) is group.

Sol:

*isassociative

(1,0) identity

 $\left(\frac{1}{a}, \frac{-b}{a}\right)$ is the inverse of (a, b)

But (G,*) is not abelian since

$$(1,2) * (3,4) = (3,10)$$

 $(3,4) * (1,2) = (3,6)$

(2) Let G be a group, let $H = \{a, b \in G : a \times b = e\}$. (H,\times) is not group.

(3) Let

$$G = \{fi: R - \{0,1\} \to \{0,1\}\}, i = 1,2,3,4,5,6 \text{ where } f_1(x) = x, f_2(x) = \frac{1}{x}, f_3(x) = 1 - 1, f_4(x) = \frac{1}{1-x}, f_5(x) = \frac{x-1}{x}, f_6(x) = \frac{x}{x-1}, \text{ then } f_4(x) = \frac{x}{x-1}, f_6(x) = \frac{x}{x-1}, f_8(x) = \frac{x$$

 (G, \circ) is group

Remarks:

- -1. Let Gbe a group then the identity is unique $e_1 = e_1 * e_2 = e_2$.
- 2. Let G be a group and $a \in G$, then a^{-1} is unique.
- 3. Let G be a group and $\in G$, then $(a^{-1})^{-1} = a$.

Proof (1): Suppose e_1 and e_2 both identity in G $e_2 = e_1$ (since e_1 identity) * e_2 (since e_2 identity) = e_1

 $\therefore e_1 = e_2$

Proof (2): Suppose b_1 and b_2 are inverse of a

$$a * b_1 = b_1 * a = e$$

$$a * b_2 = b_2 * a = e$$

$$b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$$

Proof (3): a inverse of a^{-1} $(a^{-1})^{-1}$ inverse of a^{-1} But the inverse is unique $\therefore a = (a^{-1})^{-1}$

Remark:

Let G be a group and $a, b \in G$, then $(a * b)^{-1} = b^{-1} * b^{-1}$

Proof:
$$(b^{-1} * a^{-1}) * (a * b) = b^{-1} * (a^{-1} * a) * b = b^{-1} * e * b = b^{-1} * b = e$$

 $(a * b) * (b^{-1} * a^{-1}) = a * (b * b^{-1}) * a^{-1} = a * e * a^{-1} = a * a^{-1} = e$
Thus $b^{-1} * a^{-1}$ is inverse of $a * b$ but $(a * b)^{-1}$ is inverse of $a * b$ by (b)

the inverse unique thus $(a * b)^{-1} = b^{-1} * a^{-1}$

Theorem:

(Cancellation law): Let *G* be a group and *a*, *b*, *c* \in *G* (1) If a * b = a * c, then b = c. (2) If b * a = c * a, then b = c. Proof(1): $a^{-1} * (a * b) = a^{-1} * (a * c)[a^{-1} \in G$, since *G* is a group] $(a^{-1} * a) * b = (a^{-1} * a) * c$ [*Associative, since *G* is a group] e * b = e * c b = c

Definition:

Let G be a group and $a \in G$, n any positive integer

$$a^n = \underbrace{a * a * ... * a}_{\text{n times}}$$

Remark:

Let (G,*) be a group and $a \in G$, then for all $n, m \in Z$ $1 - a^{n+m} = a^n * a^m$ $2 - (a^n)^m = a^{nm}$

Problems:

(1) Determine whether or not the following are abelian groups a. $G = Q - \{1\}$: a * b = a + b - ab. b. $G = R \times R$: (a, b) * (c, d) = (ac - bd, ad + bc). c. G = Z: a * b = 0

Proof(a):

• Is a binary operation

If a + b - ab = 1; $a, b \in Q - \{1\}$ Then b(1 - a) = 1 - a, then b = 1 contradiction * Is associative.

Let $a, b, c \in Q - \{1\}$, we want to show that (a * b) * c = a * (b * c)

$$(a+b-ab)*c = a*(b+c-bc)$$

L.H.S. =
$$a + b - ab + c - ac - bc + abc$$

R.H.S. = $a + b + c - bc - ab - ac + abc$,

The identity e = 0, $a \in G$

$$a * 0 = a + 0 - a.0 = a$$

 $0 * a = 0 + a - 0a = a$

Let $b \in G$, suppose there is y then b * y = 0 and b + y - by = 0

Then y(1-b) = -b, $y = b/b - 1 \in Q - \{1\}$

If b/b - 1 = 1, then b = b - 1, then 1 = 0 contradiction Hence $b = 1b^{-1} = b/b - 1$

Thus (G,*) is a group.

Now, since a * b = a + b - ab, b * a = b + a - ba, then a * b = b * aThus (G,*) is anabelain) group.

2- Let $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, where $f_i: R - \{0\} \to R - \{0\}$ define by

$$f_1(x) = x, f_2(x) = \frac{1}{x}, f_3(x) = 1 - x, f_4(x) = \frac{1}{1 - x}, f_5(x)$$

= $\frac{x - 1}{x}, f_5(x) = \frac{x}{x - 1}$.

Is (G, \circ) Abelian group? Why?.

	o	f_1	f_2	f_3	f_4	f_5	f_6
	f_1	f_1	f_2	f_3	f_4	f_5	f_6
•	f_2	f_2	f_1	f_4	f_3	f_6	f_5
•	f_3	f_3	f_5	f_1	f_6	f_2	f_4
	f_4	f_4	f_6	f_2	f_1	f_5	f_3