Chapter Two

Rational and Real numbers

The construction of rational numbers

Let Z be a set of integer numbers and let $A = Z/\{0\}$

 $Z \times A = \{(m, n); m \in Z, n \in A \text{ i.e } n \neq 0\}$

Let \sim be a relation defined on $Z \times A$ as follows

 $(m, n), (p, q) \in Z \times A$ $(m, n) \sim (p, q)$ if $mq = np$

H.W: Prove this is equivalence relation.

Definition: The set of all equivalence classes

 $\overline{(m,n)}$ =

is called the rational numbers and denoted by Q

For example

 $\frac{8}{30}$

。。。。。

$$
\overline{(0,1)} = \{(p,q) \in Z \times A; (p,q) \sim (0,1)\} = \{(p,q); p. 1 = 0, q\}
$$

= $\{(p,q); p = 0\} = \{(0,1), (0,2), (0,3), \dots\}$

Remark: $\overline{(m,n)} \equiv \frac{m}{n}$ \boldsymbol{n}

 $\frac{m}{n}$ ينظر الى العدد النسبي $\overline{(m,n)}$ على انه

Summation and multiplication on Q.

Definition: Let $x, y \in Q$ such that $x = \overline{(m, n)}$, $y = \overline{(r, s)}$, then

1.
$$
x + y = \overline{(m, n)} + \overline{(r, s)} = \overline{(ms + nr, ns)}
$$

i.e

 \boldsymbol{n}

S

 ns

$$
\left(\frac{m}{n} + \frac{r}{s}\right) = \frac{ms + nr}{ns} = \overline{(ms + nr, ns)}
$$

2. $x \cdot y = \overline{(m, n)} \cdot \overline{(r, s)} = \overline{(mr, ns)}$
i.e

$$
\frac{m}{n} \cdot \frac{r}{s} = \frac{mr}{n} = \overline{(mr, ns)}
$$

- 1. $x + y = y + x$
- 2. $(x + y) + z = x + (y + z)$, $\forall z \in Q$
- 3. If $0 = \overline{(0,n)}$ then $x + 0 = 0 + x = x$

4. For each $x \in Q$, $\exists (-x) \in Q$ s.t $x + (-x) = 0$

In fact if $x = \overline{(m, n)}$ then $-x = \overline{(-m, n)}$

 $(-x)$ is called summation inverse of x

5. $x \cdot y = y \cdot x$

 $\frac{3}{60} - \frac{9}{60} - \frac{9}{60} = \frac{9}{60}$

- 6. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 7. If $1 = \overline{(1,1)}$ then
- 8. If $x \in Q$ and $x \neq 0$, then $\exists x^{-1} \in Q$ s.t
- $x \cdot x^{-1} = x^{-1}$.
- In fact if $x = \overline{(m, n)}$ then $x^{-1} = \overline{(n, m)}$

 x^{-1} is called multiplication inverse of x such that m

Definition: Let $0 \neq x \in Q$ such that $x = \overline{(m, n)}$, x is called positive if $m \cdot n$ is positive (i.e $m.n > 0$) and x is negative if $m \cdot n$ is negative.

Definition: Let $x, y \in Q$, then $x - y$ is defined as follows

$$
x - y = x + (-y)
$$

and if $y \neq 0$ then \mathcal{X} \mathcal{Y} is defined by:

$$
\frac{x}{y} = x \cdot y^{-1}
$$

The order: Let $x, y \in Q$, than we say x greater than $y(x > y)$ if $x - y$ is positive and we say $(x < y)$ if $x - y$ is negative.

Remark: Let $x, y \in Q$, then either $x = y$ or $x > y$ or $x < y$.

1- If x, y are positive then $x + y$ and $x \cdot y$ are positive.

2- If x, y are negative then $x + y$ is negative and $x \cdot y$ is positive.

3- If x is negative, y is positive then $x \cdot y$ is negative.

4- If $x \leq y$ and $y \leq x$ then $x = y$.

5- If $x \leq y$ and $y \leq z$ then $x \leq z$.

Proof:

1- Let
$$
x = (\overline{a}, \overline{b})
$$
, $y = \overline{(c, b)}$ and $(ab > 0) \wedge (cd > 0)$ s.t $a, b, c, d \in A$

 $x + y = \overline{(a, b)} + \overline{(c, d)} = \overline{(ad + cb, bd)}$

Note that, $(ad + cb) \cdot bd = abdd + cdbb > 0$

 \therefore x + y is positive

$$
x \cdot y = \overline{(a, b)} \cdot (\overline{c, d)} = (ab)(cd) > 0
$$

 \therefore x. y is positive

Real Numbers:

Let $(F, +, \cdot)$ be atriple consist, of a nonempty set F with two operations $(+)$, (\cdot) , $(+)$ is called plus operation and (.) is called time operation.

 $(F, +, \cdot)$ is called field if it is satisfy the following properties:-

1. $\forall a, b, c \in \mathbb{F}$, then $(a + b) + c = a + (b + c)$.

2. \exists an element $o \in \mathbb{F}$ s.t $a + 0 = 0 + a = a$, $\forall a \in \mathbb{F}$.

0 is called additive identity. الجمعي المحايد العنصر

3. $\forall a \in \mathbb{F}, \exists -a \in \mathbb{F}$ s.t $a + (-a) = (-a) + a = 0$

-a is called summation inverse

- 4. $\forall a, b \in \mathbb{F}$, then $a + b = b + a$
- **5.** $\forall a, b, c \in \mathbb{F}$, then $a \cdot (b, c) = (a \cdot b) \cdot c$
- **6.** $\exists 1 \in \mathbb{F}$ s.t $1 \cdot a = a$, $1 = a$, $\forall a \in \mathbb{F}$

1 is called multiplicative identity

- 7. $\forall a, b \in \mathbb{F}$, then $a \cdot b = b$. a
- **8.** $\forall 0 \neq a \in \mathbb{F}, \exists a^{-1} \in F \text{ sit } a \cdot a^{-1} = a^{-1}$.
- a^{-1} is called multiplication inverse
- 9. $\forall a, b, c \in \mathbb{F}$, then $(a + b) \cdot c = a \cdot c + b \cdot c$
- 10. $1 \neq 0$

Definition: Let $(F, +, .)$ Be a field and let (\le) be order relation on F .

i.e. (\mathbb{F}, \leq) is ordered set

Then $(F, +, \ldots \leq)$ is ordered field if:-

- **1.** For each, b, c, $d \in \mathbb{F}$, if $a \le b$ and $c \le d$ then $a + c \le b + d$.
- **2.** If $0 < a \leq b$ and or $0 < c \leq d$ then $a, c \leq b, d$.

Definition:

 $\mathbb{F}^+ = \{x \in \mathbb{F}; x > 0\}$ represent the positive elements (numbers) in \mathbb{F} .

 $\mathbb{F}^- = \{x \in \mathbb{F}; x < 0\}$ represent the negative elements (numbers) in \mathbb{F} .

Note that $\mathbb{F}^+ \cap \mathbb{F}^-$

Remark:

- 1- If $x, y \in \mathbb{F}^+$, then $x + y \in \mathbb{F}^+$, $x \cdot y \in \mathbb{F}^+$
- 2- If $x, y \in \mathbb{F}^-,$ then $x + y \in \mathbb{F}^-, x \cdot y \in \mathbb{F}^+$
- 3- If $x \in \mathbb{F}^+$, $y \in \mathbb{F}$ then $x \cdot y \in \mathbb{F}$
- 4- 1 is greater than 0.

Definition: Let (S, \leq) be ordered set and $A \subseteq S$

- **1.** $a \in S$ is called "upper bound" of the set A if $x \le a$, $\forall x \in A$.
- 2. $b \in S$ is called "lower bound" of the set A if $b \le x$, $\forall x \in A$.
- 3. $c \in S$ is called "least upper bound" of the set A if
- $c \le a$, for each upper bound *a* of A. (denoted by L.U.b).

4. $d \in S$ is called "greatest lower bound" of the set A if

 $b \le d$, for each lower bound b of A. (denoted by g.L.b)

Definition:

Let (S, \leq) be ordered set and $A \subseteq S$

1- A is called "upper bounded set" if A has upper bound.

2- A is called "lower bounded set" if A has lower bound.

3-A is called "bounded set" if it has upper bound and bower bound.

Remark:

 $c = L \cdot u \cdot b(A) = \sup(A)$ $d = g \cdot L \cdot b(A) = \inf(A)$

c, d are unique

The completeness property of real numbers لالعداد الكمال خاصية الحقيقية

Every nonempty subset S of real numbers has an upper bound, then it has a least upper bound.

Proposition:

Each ordered field consists of a subfield similar to the rational number field,

Question: Can the rational number equal to the real number ie $Q = \mathbb{R}$?

To answer this question, we begin the following proposition.

Proposition: The equation $x^2 = 2$ has no solution in Q.

Proof: Let $y \in Q$ that satisfy the equation

i.e
$$
y = \frac{a}{b}
$$
, $a, b \in Z$, $b \ne 0$ and $\left(\frac{a}{b}\right)^2 = 2 \to a^2 = 2b^2$

Case1: If a, b are odd $\rightarrow a^2$ is odd

but $a^2 = 2b^2 \rightarrow a^2$ is even

Case2: If α is odd and β is even

$$
\Rightarrow b = 2d
$$

$$
\Rightarrow a^2 = 2(2d)^2 = 8d^2
$$

but a^2 is odd "since a is odd". & $8d^2$ is even C!

Case3: If a , is even and b is odd

$$
\Rightarrow a = 2c
$$

\n
$$
\Rightarrow 4c^2 = 2b^2
$$

\n
$$
\Rightarrow 2c^2 = b^2
$$

but b^2 is odd "since b is odd" and $2c^2$ is even C!

So that, there is no $y \in Q$ satisfy the equation.

Theorem: The equation $x^2 = 2$ has a unique positive real solution.

Corollary: Q is not complete field.

Theorem: For each positive real number a and positive integer number n , there is a unique real number satisfy the equation $x^n = a$.

The solution is denoted by $\sqrt[n]{a}$

Corollary: show that $Q \subset \mathbb{R}$. H.W.

Definition: Let Q' be the set of complement of Q in \mathbb{R} .

ie Q'

Note that $\sqrt{2} \notin Q$ while $\sqrt{2} \in Q'$, hence $Q \neq \varphi'$

 Q' is called the set of irrational number

Archimedes property theorem:

For each real numbers a, b such that $a > 0$, then there exists a positive integer number n such that $na > b$.

Corollary: For each positive real number ϵ , there exists a positive integer number *n* such that $\frac{1}{n} < \epsilon$.

Proof:

put $b=1, a=\epsilon>0$

Thus by Archimedes property theorem