Chapter Two

Rational and Real numbers

The construction of rational numbers

Let Z be a set of integer numbers and let $A = Z/\{0\}$

 $Z \times A = \{(m, n); m \in Z, n \in A \text{ i.e } n \neq 0\}$

Let ~ be a relation defined on $Z \times A$ as follows

 $(m, n), (p, q) \in Z \times A$ $(m, n) \sim (p, q)$ if mq = np

H.W: Prove this is equivalence relation.

Definition: The set of all equivalence classes

 $\overline{(m,n)} = \{(p,q) \in Z \times A; (p,q) \sim (m,n)\}$

is called the rational numbers and denoted by Q

For example

°°°

$$\overline{(0,1)} = \{(p,q) \in Z \times A; (p,q) \sim (0,1)\} = \{(p,q); p.1 = 0, q\}$$

= $\{(p,q); p = 0\} = \{(0,1), (0,2), (0,3), \dots\}$

Remark: $\overline{(m,n)} \equiv \frac{m}{n}$

 $rac{m}{n}$ ينظر الى العدد النسبي $\overline{(m,n)}$ على انه

Summation and multiplication on Q.

Definition: Let $x, y \in Q$ such that $x = \overline{(m, n)}, y = \overline{(r, s)}$, then

1.
$$x + y = \overline{(m,n)} + \overline{(r,s)} = \overline{(ms + nr, ns)}$$

$$\left(\frac{m}{n} + \frac{r}{s}\right) = \frac{ms + nr}{ns} = \overline{(ms + nr, ns)}$$
2. $x \cdot y = \overline{(m, n)} \cdot \overline{(r, s)} = \overline{(mr, ns)}$
i.e
$$\frac{m}{n} \cdot \frac{r}{s} = \frac{mr}{ns} = \overline{(mr, ns)}$$

- 1. x + y = y + x
- 2. $(x + y) + z = x + (y + z), \forall z \in Q$
- 3. If $0 = \overline{(0,n)}$ then x + 0 = 0 + x = x

4. For each $x \in Q$, $\exists (-x) \in Q$ s.t x + (-x) = 0In fact if $x = \overline{(m, n)}$ then $-x = \overline{(-m, n)}$

(-x) is called summation inverse of x

5. $x \cdot y = y \cdot x$

- 6. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 7. If $1 = \overline{(1,1)}$ then $x \cdot 1 = 1 \cdot x = x \forall x \in Q$.
- 8. If $x \in Q$ and $x \neq 0$, then $\exists x^{-1} \in Q$ s.t
- $x \cdot x^{-1} = x^{-1} \cdot x = 1$

In fact if $x = \overline{(m,n)}$ then $x^{-1} = \overline{(n,m)}$

 x^{-1} is called multiplication inverse of x such that $m \neq 0$

Definition: Let $0 \neq x \in Q$ such that $x = \overline{(m, n)}$, x is called positive if $m \cdot n$ is positive (i.e. m.n > 0) and x is negative if $m \cdot n$ is negative.

Definition: Let $x, y \in Q$, then x - y is defined as follows

$$x - y = x + (-y)$$

and if $y \neq 0$ then $\frac{x}{y}$ is defined by:

$$\frac{x}{y} = x \cdot y^{-1}$$

The order: Let $x, y \in Q$, than we say x greater than y(x > y) if x - y is positive and we say (x < y) if x - y is negative.

Remark: Let $x, y \in Q$, then either x = y or x > y or x < y.

1- If x, y are positive then x + y and $x \cdot y$ are positive.

2- If x, y are negative then x + y is negative and $x \cdot y$ is positive.

3- If x is negative, y is positive then $x \cdot y$ is negative.

4- If $x \leq y$ and $y \leq x$ then x = y.

5- If $x \leq y$ and $y \leq z$ then $x \leq z$.

Proof:

1- Let
$$x = (\overline{a, b}), y = \overline{(c, b)}$$
 and $(ab > 0) \land (cd > 0)$ s.t $a, b, c, d \in \mathbb{Z}$

 $x + y = \overline{(a,b)} + \overline{(c,d)} = \overline{(ad + cb,bd)}$

Note that, $(ad + cb) \cdot bd = abdd + cdbb > 0$

 $\therefore x + y$ is positive

$$x \cdot y = \overline{(a,b)} \cdot (\overline{c,d)} = (ab)(cd) > 0$$

 $\therefore x. y$ is positive

Real Numbers:

Let $(\mathbb{F}, +, \cdot)$ be atriple consist, of a nonempty set \mathbb{F} with two operations $(+), (\cdot), (+)$ is called plus operation and (.) is called time operation.

 $(\mathbb{F}, +, \cdot)$ is called field if it is satisfy the following properties:-

1. $\forall a, b, c \in \mathbb{F}$, then (a + b) + c = a + (b + c).

2. \exists an element $o \in \mathbb{F}$ s.t a + 0 = 0 + a = a, $\forall a \in \mathbb{F}$.

0 is called additive identity. العنصر المحايد الجمعى

3. $\forall a \in \mathbb{F}, \exists -a \in \mathbb{F} \text{ s.t } a + (-a) = (-a) + a = 0$

-a is called summation inverse

- 4. $\forall a, b \in \mathbb{F}$, then a + b = b + a
- 5. $\forall a, b, c \in \mathbb{F}$, then $a \cdot (b, c) = (a \cdot b) \cdot c$
- 6. $\exists 1 \in \mathbb{F} \text{ s.t } 1.a = a.1 = a, \forall a \in \mathbb{F}$

1 is called multiplicative identity

- 7. $\forall a, b \in \mathbb{F}$, then $a \cdot b = b \cdot a$
- 8. $\forall 0 \neq a \in \mathbb{F}, \exists a^{-1} \in F \text{ sit } a \cdot a^{-1} = a^{-1} \cdot a = 1$
- a^{-1} is called multiplication inverse
- 9. $\forall a, b, c \in \mathbb{F}$, then $(a + b) \cdot c = a \cdot c + b \cdot c$
- 10. $1 \neq 0$

Definition: Let $(\mathbb{F}, +, .)$ Be a field and let (\leq) be order relation on \mathbb{F} .

i.e. (\mathbb{F}, \leq) is ordered set

Then $(\mathbb{F}, +, ., \leq)$ is ordered field if:-

1. For each , $b, c, d \in \mathbb{F}$, if $a \leq b$ and $c \leq d$ then $a + c \leq b + d$.

2. If $0 < a \le b$ and or $0 < c \le d$ then $a \cdot c \le b \cdot d$.

Definition:

 $\mathbb{F}^+ = \{x \in \mathbb{F}; x > 0\}$ represent the positive elements (numbers) in \mathbb{F} .

 $\mathbb{F}^- = \{x \in \mathbb{F}; x < 0\}$ represent the negative elements (numbers) in \mathbb{F} .

Note that $\mathbb{F}^+ \cap \mathbb{F}^- = \phi$

Remark:

- 1- If $x, y \in \mathbb{F}^+$, then $x + y \in \mathbb{F}^+$, $x \cdot y \in \mathbb{F}^+$
- 2- If $x, y \in \mathbb{F}^-$, then $x + y \in \mathbb{F}^-, x \cdot y \in \mathbb{F}^+$
- 3- If $x \in \mathbb{F}^+$, $y \in \mathbb{F}^-$ then $x \cdot y \in \mathbb{F}^-$
- 4-1 is greater than 0.

Definition: Let (S, \leq) be ordered set and $A \subseteq S$

- **1**. $a \in S$ is called "upper bound" of the set A if $x \leq a$, $\forall x \in A$.
- **2**. $b \in S$ is called "lower bound" of the set A if $b \leq x$, $\forall x \in A$.
- 3. $c \in S$ is called "least upper bound" of the set A if
- $c \leq a$, for each upper bound *a* of A. (denoted by L.U.b).

4. $d \in S$ is called "greatest lower bound" of the set *A* if

 $b \leq d$, for each lower bound *b* of *A*. (denoted by g.L.b)

Definition:

Let (S, \leq) be ordered set and $A \subseteq S$

1- A is called "upper bounded set" if *A* has upper bound.

2- A is called "lower bounded set" if A has lower bound.

3-A is called "bounded set" if it has upper bound and bower bound.

Remark:

 $c = L \cdot u \cdot b(A) = \sup(A)$ $d = g \cdot L \cdot b(A) = \inf(A)$

c, *d* are unique

The completeness property of real numbers خاصية الكمال للاعداد The completeness property of real numbers

Every nonempty subset S of real numbers has an upper bound, then it has a least upper bound.

Proposition:

Each ordered field consists of a subfield similar to the rational number field,

Question: Can the rational number equal to the real number ie $Q = \mathbb{R}$?

To answer this question, we begin the following proposition.

Proposition: The equation $x^2 = 2$ has no solution in *Q*.

Proof: Let $y \in Q$ that satisfy the equation

i.e
$$y = \frac{a}{b}$$
, $a, b \in Z$, $b \neq 0$ and $\left(\frac{a}{b}\right)^2 = 2 \rightarrow a^2 = 2b^2$

Case1: If a, b are odd $\rightarrow a^2$ is odd

but $a^2 = 2b^2 \rightarrow a^2$ is even C!

Case2: If *a* is odd and *b* is even

$$b = 2d
 a^2 = 2(2d)^2 = 8d^2$$

but a^2 is odd "since a is odd". & $8d^2$ is even C!

Case3: If *a*, is even and *b* is odd

but b^2 is odd "since b is odd" and $2c^2$ is even C!

So that, there is no $y \in Q$ satisfy the equation.

Theorem: The equation $x^2 = 2$ has a unique positive real solution.

Corollary: *Q* is not complete field.

Theorem: For each positive real number *a* and positive integer number *n*, there is a unique real number satisfy the equation $x^n = a$.

The solution is denoted by $\sqrt[n]{a}$

Corollary: show that $Q \subset \mathbb{R}$. H.W.

Definition: Let Q' be the set of complement of Q in \mathbb{R} .

ie $Q' = \mathbb{R} \setminus Q$

Note that $\sqrt{2} \notin Q$ while $\sqrt{2} \in Q'$, hence $Q \neq \varphi'$

Q' is called the set of irrational number

Archimedes property theorem:

For each real numbers a, b such that a > 0, then there exists a positive integer number n such that na > b.

Corollary: For each positive real number \in , there exists a positive integer number *n* such that $\frac{1}{n} < \epsilon$.

Proof:

put $b = 1, a = \epsilon > 0$

Thus by Archimedes property theorem