f_5	f_5	f_3	f_6	f_3	f_1	f_2
f_6	f_6	f_4	f_5	f_2	f_4	f_1

Sol:

$$(f_1^{\circ} f_1)(x) = f_1(f_1(x)) = f_1(x) = x$$

$$(f_2^{\circ} f_2)(x) = f_2(f_2(x)) = f_2\left(\frac{1}{x}\right) = x$$

$$(f_2 \, {}^{\circ}f_3)(x) = f_2(f_3(x)) = f_2(1-x) = \frac{1}{1-x}$$

 $(f_3 \, {}^{\circ}f_2)(x) = f_3(f_2(x)) = f_3\left(\frac{1}{x}\right) = 1 - \frac{1}{3x}$
Thus $(G_1, {}^{\circ})$ is not abelian group.

Remark:

Let G be a group, then the following are equivalent

- 1. *G* is abelian.
- 2. $(a * b)^{-1} = a^{-1} * b^{-1}$
- 3. $(a*b)^2 = a^2*b^2$

Proof:
$$(1) \to (2)$$

 $(a * b)^{-1} = b^{-1} * a^{-1} = a^{-1} * b^{-1}$
 $by(2) \to (3)(a * b)^2 = (a * b)(a * b) = a * (b * a) * b = a * ((b * a))^{-1})^{-1} * (2)$
 $= a * (a^{-1} * b^{-1})^{-1} * b = a * (a^{-1})^{-1} * (b^{-1})^{-1} * b = a * a * b * b$
 $= a^2 * b^2$
 $(3) \to (1)$
 $(a * b)^2 = a^2 * b^2$
 $(a * b) * (a * bl = a * a * b * b$ (Cancellation law)
 $\therefore b * a = a * b$

∴ G is abelian.

Remark:

Let G be a group, if $a^2 = e$, $\forall a \in G$, then G is abelian. Proof: Since $a^2 = e$, then a * a = e

$$a^{-1} * a * a = a^{-1} * e$$
 $a = a^{-1}$
 $(a * b)^{-1} = b^{-1} * a^{-1}$
 $a * b = b * a$

 \therefore G is abelian.

Definition:

 $a \equiv b \pmod{n} \Leftrightarrow a - b = nk$.

This relation \equiv used to construct a new group with exactly n element

$$[a] = \{x \in Z : x \equiv a(\bmod n)\}$$
$$= \{x \in Z : x = a + kn; k \in Z\}$$

If we deal with module 3

$$\overline{0} = [0] = \{x \in Z : x = 3k\} = \{0, \mp 3, \mp 6, \mp 9, \dots\}$$

$$\overline{1} = [1] = \{x \in Z : x = 3k + 1\} = \{\mp 4, \mp 7, +10, \dots\}$$

$$\overline{2} = [2] = \{x \in Z : x = 3k + 2\} = \{\dots, -4, -1, 0, 5, 8, \dots\}$$

$$Z_n = \{[0], [1], \dots, [n-1]\}$$

$$Z_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

Example: $(Z_n, +_n)$

$$\bar{a}+t_n\bar{b}=\overline{a+b}=\bar{c}$$
 s.t $a+b=c+kin;a,b,c,k\in\mathbb{Z}$ In $(Z_3,+_3);Z_3=\{\overline{0},\overline{1},\overline{2}\}$

$$\overline{1} + {}_{3}\overline{1} = \overline{2}, \overline{2} + {}_{3}\overline{1} = \overline{2+1} = \overline{0}; \overline{0}$$

Example:

$$Z_8 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}}$$

Solution:
$$\overline{\overline{5}} + \overline{6} = \overline{11} = \overline{3}$$

Example:

 $(Z_n, +_n)$ Is anabelian group.

- $(1) +_n$ Is a binary operation.
- (2) The identity is $\overline{0}$.
- (3) The inverse is $\bar{n} a$.

Definition:

Let G be a non empty set any one to one and onto function from G into G is called permutation on G.

Example:

Let $f: Z \to Z$ defined by f(n) = n + 1

f Is a permutation on Z, but $g: Z \to Z$ defined by $g(n) = n^2$ (not onto) is not permutation.

Remark:

If $N = \{1, 2, ..., n\}$ a permutation on N is any function $N \to N$ which is one to one and onto

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n-1 & n \\ 2 & 3 & 4 & \dots & \dots & n & 1 \end{pmatrix}$$

The number of permutation is n!. The set of all permutation on N is denoted by S_n .

$$S_6 = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$$

If G is a group, then G and $\{e\}$ are subgroups of G is called trivial subgroups and H is called proper subgroup if $H \subset \exists$.

Theorem:

Let G be a group and $\emptyset \neq H \subseteq G$, then H is subgroup of G if and only if $a * b^{-1} \in H \ \forall a, b \in H$.

Proof: \Rightarrow) trivial

$$\Leftrightarrow H \neq \emptyset, \exists y \in H$$

Then $y * y^{-1} \in H$, but $H \subseteq G$,

Thus $e \in H$.

 $e, y \in H$, then $e * y^{-1} \in H$, then $y^{-1} \in H$. $a, b \in H$, then $a^{-1}, b^{-1} \in H$. Thus $a * (b^{-1})^{-1} \in H$, which implies that $a * b \in H$ and H is subgroup.

Theorem:

Let *H* be a non empty finite subset of a group *G*, then *H* is a subgroup of *G* if and only if $a * b \in H \forall a, b \in H$.

Proof: \Rightarrow) trivial \Leftrightarrow)H is not empty then So $\exists a \in H$, $a \in H$, scieh that $a * a = a^2 \in H$ and $a^3, a^4, ... \in H$. But H is finite so $\exists i, j \in Z_*^+$ such that j > i and $a^j = a^i$, then (a.) $i = a^j = a$ and $a^{-i} * a^j = a$ and $a^{$

$$\alpha_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix},$$

$$\alpha_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix},$$

$$\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$\alpha_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$\alpha_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\alpha_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\alpha_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$\alpha_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$\alpha_{7} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$\alpha_{8} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\alpha_{9} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$\alpha_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\alpha_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

 (S_3, \circ) is a group, but not abelian.

The identity = α_1

The inverse of $\alpha_1 = \alpha_1$, $\alpha_2 = \alpha_3$, $\alpha_3 = \alpha_2$, $\alpha_4 = \alpha_4$, $\alpha_5 = \alpha_5$, $\alpha_6 = \alpha_6$ 0 is a binary operation is associative.

Definition:

Let (G,*) be a group and $\emptyset \neq H \subseteq G$, then (H,*) is called a subgroup of G if (H,*) is a group itself.

For each $a, b \in H$, then $a * b \in H$. For each $a \in H$, $\exists e \in H$ such that a * e = e * a = a. For each $a \in H$, $\exists a^{-1} \in H$ such that $a * a^{-1} = e$.

Example:

 $2Z \subsetneq Z \neq \emptyset$, is subgroun of Z $Zodd \subseteq Z$, is not subgroup

Remark:

Theorem:

Let $\{H_{\alpha}\}$ be a family of subgroups of a group G , then $\bigcap_{\alpha \in \Lambda} H_{\alpha}$ is also subgroups of G.

Proof: $\bigcap_{\alpha \in \Lambda} H_{\alpha} \neq \emptyset$ {since $\forall H \in G, e \in H$ } Let $a, b \in \bigcap_{\alpha \in \Lambda} H_{\alpha}$, then $a \in H\alpha$, $\forall \alpha \in \Lambda$, $b \in H\alpha$, $\forall \alpha \in \Lambda$. But $H\alpha \forall \alpha \in \Lambda$ are subgroup, then $a * b^{-1} \in \bigcap_{\alpha \in \Lambda} H_{\alpha}$, $\forall \alpha \in \Lambda$ Thus $\bigcap_{\alpha \in \Lambda} H_{\alpha}$ is subgroup.

Example:

 $Z_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$, then $(Z_4, +_4)$ is a group $H = \{\overline{0}, \overline{2}\}$ is a subgroup of Z_4 Q: (1) If H is subgroup of G, is the identity of G.

Solution:Let $x \in H, H \subseteq G$, if a is the identity of H

$$x^{-1}(xa = x)$$
$$x^{-1}xa = x^{-1}x \Rightarrow a = e$$

(2) If H_1 and H_2 are subgroups of a group G. Is $H_1 \cup H_2$ a subgroup of G? Solution: If $Z_1 = \{0, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is a group, $H_1 = \{0, \overline{3}\}$, $H_2 = \{0, \overline{2}, \overline{4}\}$ are subgroups of $Z_1 \cup H_2 = \{0, \overline{2}, \overline{3}, \overline{4}\}$ is not subgroup.

Theorem: