$nt = (m + k) \cdot t$ $(t\leftrightarrow)$ $= mt + kt$ $\rightarrow mt < nt$

5. $m + t < n + t$

By (1) either $m = n$ or $m < n$ or $n < m$

if $m = n \rightarrow m + t = n + t$ C!

if $n < m \rightarrow n + t < m + t$ by (3) C! [since $m + t < n + t$]

so that $m < n$

Construction of the integer numbers.

Let N be the natural numbers, and Let $N \times N = \{(m, n) : m, n \in W\}$

First, we define relation (N) on the set $\mathbb{N} \times \mathbb{N}$ as follows

 $(m, n) \sim (p, q)$ iff $m + q = n + p$

claim that (\sim) is equivalence relation

1. Reflexive

Let $(m, n) \in \mathbb{N} \times |N|$

we know that $m + n = n + m \rightarrow (m, n) \sim (m, n)$

2. Symmetric

Let $(m, n), (p, q) \in \mathbb{N} \times \mathbb{N}$

we have to show that if $(m, n) \sim (p, q)$ then $(p, q) \sim (m, n)$

 $(m, n) \sim (p, q) \rightarrow m + q = n + p \rightarrow p + n = q + m$

So that, $(p, q) \sim (m, n)$

3. Transitive

Let (m, n) , $(p(q), (r, s) \in \mathbb{N} \times \mathbb{N}$

we have to show that

if
$$
(m,n) \sim (p,q)
$$
 and $(p,q) \sim (r,s)$, then $(m,n) \sim (r,s)$,

$$
m + q = n + p
$$

\n
$$
p + s = q + r
$$

\n
$$
m + q + p + s = n + p + q + r \rightarrow m + s = n + r
$$

So that $(m, n) \sim (r, s)$

Hence (\sim) is equivalence relation on $\mathbb{N} \times \mathbb{N}$

Second,

Since (\sim) is the equivalence relation on $\mathbb{N} \times \mathbb{N}$, then the equivalence classes of (m, n) is called integer number and dented by $(\overline{m}, \overline{n})$.

 (m, n) is called the representation of the integer number. ie

 $\overline{(m,n)}$ =

The set of all equivalence classes is called "set of integer numbers" and is denoted by Z.

Remark: $x = \overline{(m, n)}$ denoted by

 m - n ينظر الى صف التكافؤ $\overline{(m,n)}$ على انه العدد

Example:

1.
$$
0 =: \overline{(m, m)}
$$

\t $= \{(p, q) \in \mathbb{N} \times \mathbb{N}; (p, q) \sim (m, m)\}$
\t $= \{(p, q) \in \mathbb{N} \times \mathbb{N}; p + m = q + m\}$
\t $= \{(p, q) \in \mathbb{N} \times \mathbb{N}; p = q\}$
\t $= \{(1, 1), (2, 2), (3, 3), ...\}$
\n2.
\t $\overline{(2, 1)} = \{(p, q) \in \mathbb{N} \times \mathbb{N}; (p, q) \sim (2, 1)\}$
\t $= \{(p, q); p + 1 = q + 2\}$
\t $= \{(p, q); p = q + 1\}$
\t $= \{(2, 1), (3, 2), (4, 3), ...\}$

3.
\n
$$
\overline{(1,2)} = \{(p,q) \in \mathbb{N} \times \mathbb{N}; (p,q) \sim (1,2)\}
$$
\n
$$
= \{(p,q); p+2 = q+1\}
$$
\n
$$
= \{(p,q); p+1 = q\}
$$
\n
$$
= \{(1,2), (2,3); (3,4); \dots\}
$$

4. What is the integer number $(+7)$

 $+7 = \{(8,1), (9,2), (10,3), ...\}$

Summation and multiplication on Z.

Definition: Let $x = \overline{(m, n)}$ and $y = \overline{(r, s)}$ are two integer numbers. Then

1.
$$
x + y = (m + r, n + s)
$$

2. $x \cdot y = (m \cdot r + n \cdot s, m \cdot s + n \cdot r)$

Example: Find

1. $(-3) + 7$

 $2. (-3).7$

Solution

$$
-3 = \overline{(1,4)}, \quad 7 = \overline{(8,1)}
$$

1.
$$
(-3) + 7 = \overline{(1,4)} + \overline{(8,1)} = \overline{(1+8,4+1)} = \overline{(9,5)} = 4
$$

2. $(-3) \cdot 7 = \overline{(1,4)} \cdot \overline{(8,1)} = \overline{(8+4,1+32)} = \overline{(12,33)} =$ -21

Proposition: Let $x, y, z \in Z$. Then

1.
$$
x + y = y + x
$$
, $x \cdot y = y \cdot x$
\n2. $(x + y) + z = x + (y + z)$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
\n3. $x + 0 = 0 + x = x$, $x \cdot 1 = 1 \cdot x = x$
\n4. $x \cdot (y + z) = x \cdot y + x \cdot z$
\n5. $x + (-x) = 0$, $(-x)$ is called inverse of x
\n**Proof:**

1. Let
$$
x = \overline{(m, n)}, y = \overline{(r, s)}
$$

\n
$$
x + y = \overline{(m, n)} + \overline{(r, s)} = \overline{(m + r, n + s)} = \overline{(r + m, s + n)} = \overline{(r, s)} + \overline{(m, n)}
$$
\n
$$
= y + x
$$
\n
$$
x \cdot y = \overline{(m, n)} \cdot \overline{(r, s)} = \overline{(mr + ns, ms + nr)} = \overline{(rm + sn, sm + rn)}
$$
\n
$$
= \overline{(r, s)} \cdot \overline{(m, n)} = y \cdot x
$$
\n3. Let $x = \overline{(r, s)}, 0 = \overline{(m, m)}$

$$
x + 0 = \overline{(r, s)} + \overline{(m, m)} = \overline{(r + m, s + m)} = \overline{(r, s)} = x
$$

Since $r + m + s = s + m + r \rightarrow (r + m, s + m) \sim (r, s) \rightarrow \overline{(r + m, s + m)} = \overline{(r, s)}$

Similarly $0 + x = x$

Let
$$
1 = \overline{(m+1,m)}
$$

\n
$$
\therefore x: 1 = \overline{(r,s)} \cdot \overline{(m+1,m)} = \overline{(r \cdot (m+1) + sm, rm + s(m+1))}
$$
\n
$$
= \overline{(rm + r + sm, rm + sm + s)} = \overline{(r,s)} = x
$$

Since

$$
rm + r + sm + s = rm + sm + s + r
$$

\n
$$
\rightarrow (rm + r + sm, rm + sm + s) \sim (r, s)
$$

\n
$$
\rightarrow \overline{(rm + r + sm, rm + sm + s)} = \overline{(r, s)}
$$

\n5. Let $x = \overline{(m, n)}$, put $-x = \overline{(n, m)}$
\n $x + (-x) = \overline{(m, n)} + \overline{(n, m)} = \overline{(m + n, n + m)} = \overline{(m, m)}$
\nSince

$$
m + n + m = n + m + m \rightarrow (m + n, n + m) \sim (m, m)
$$

\n
$$
\rightarrow (m + n, n + m) = \overline{(m, m)}.
$$

Definition: Let $x, y \in Z$; the difference between x and y denoted by

$$
x - y = x + (-y)
$$

Definition: Let $x = \overline{(m, n)}$, then x is said to be positive integer number if $m > n$ and is called negative integer number if $n > m$, Where " > " is order relation on N.

ERREF

Proposition: Let $x, y \in Z$

1- If each of x, y are positive then $x + y$, $x \cdot y$ are positive.

2- If each of x, y are negative then $x + y$ is negative and $x \cdot y$ is positive.

3- If x is positive and y is negative then x . y is negative.

Proof:

1. Let $x = \overline{(m, n)}$, $y = \overline{(r, s)}$

Since each of x, y are positive

So that $m > n$ $r > s$

 \rightarrow m + r > n + s

Hence $x + y = (m + r, n + s)$ is positive.

Remark: 1. For each $x, y \in Z$ then either $x = y$ or $x > y$ or $x < y$.

La

2. $x \geq y$ that is mean $x > y$ or $x = y$.

Proposition: Let $x, y, z \in Z$

 $1-x \geqslant x -1$

2- If $x \geq y$ and $y \geq x$ then $x = y$

3- If $x \ge y$ and $y \ge z$ then $x \ge z$

Proof:

1-
$$
x \ge x \rightarrow x > x
$$
 or $x = x$
\n2- $x \ge y \rightarrow x > y$ or $x = y$
\n $x \le y \rightarrow x < y$ or $x = y$
\n $x \ge y$ and $x \le y \rightarrow (x > y \lor x = y) \land (x < y \lor x = y)$
\n $\rightarrow (x = y \lor x > y) \land (x = y \lor x < y)$
\n $\rightarrow (x = y) \lor (x > y \land x < y)$
\n $\rightarrow x = y$
\n3- $x \ge y \rightarrow x > y$ or $x = y$.

$$
3 - x \geqslant y \longrightarrow x > y \text{ or } x = y.
$$

$$
y \ge z \to y > z \text{ or } y = z
$$

\n
$$
(x > y \lor x = y) \land (y > z \lor y = z)
$$

\n
$$
x > y \land y > z \to x > z
$$

\n
$$
x = y \land y > z \to x > z
$$

\n
$$
x = y \land y = z \to x = z
$$

Since

$$
\begin{array}{l}\nx > y \to x - y > 0 \\
y > z \to y - z > 0\n\end{array} \rightarrow (x - y) + (y - z) > 0 \rightarrow x - z > 0 \rightarrow x > z
$$

Theorem [Division Algorithm] القسمة خوارزمية

Let a, b are positive integer numbers and $a > b$, there exist positive integer number q and nonnegative integer number r such that

 $a = bq + r$, $0 \le r < b$. In addition, q and r are unique elements satisfies this condition.

 \dot{r} is called Remainder and \dot{q} is called quotient

For example

- 1. $a = 3, b = 2 \rightarrow 3 = 2.1 + 1; q = 1, r = 1, \text{ or } r < 2$
- 2. $a = 7, b = 3 \rightarrow 7 = 3.2 + 1; q = 2, r = 1, 0 \le r \le 3$
- 3. $a = 8, b = 4 \rightarrow 8 = 4.2 + 0,$; $q = 2, r = 0$

Example: Let a be positive number, if $b = 2$ then either

 $a = 2q$ or $a = 2q + 1$; $0 \le r < 2$

(i.e either a is even number or a is add number)

Solution: By division algorithm, $\exists q, r \text{ s.t.}$

 $a = 2q + r$; $0 \le r < 2$

So that

 $\frac{8}{\circ}$ $\frac{8}{\circ}$

 $\frac{3}{60}$ $\frac{3}{60}$ $\frac{3}{60}$

 $\frac{3}{6} - \frac{9}{6} - \frac{9}{6}$

if $r = 0 \rightarrow a = 2q$, hence a is even number

if $r = 1 \rightarrow a = 2q + 1$, hence a is odd number

Example: Prove that each odd integer number can be written as

 $4k + 1$ or $4k + 3$; $k \in Z$

Solution:

We take a is odd number and take $b = 4$, hence by division algorithm $a = 4k + r$ wher s $0 \leqslant r < 4$

If $r = 0 \rightarrow a = 4k$ C! Since a is odd while 4k is even

$$
If r = 1 \rightarrow a = 4k + 1
$$

If $r = 2 \rightarrow a = 2k + 2$ C! Since a is odd while 4k is even

$$
If r = 3 \rightarrow a = 4k + 3
$$

So that, any odd number is write as $4k + 1$ or $4k + 3$