$$\exists q, t \in Z \text{ such that } r = mq + t; 0 \le t < m$$
 $w = a^r = a^{mq+t} = a^{mq}a^t = (a^m)^q a^t = e. a^t = a^t, t < m$
so $w \in S$, hence $G \subseteq S$. But $O(G) = n$
Thus $n = m$

Corollary:

- (1) Let $G = \langle a \rangle$ of order n, then n the smallest positive integer such that $a^n = e$.
- (2) Let $G = \langle a \rangle$, if O(G) = n and $a^m = e$, then $n \setminus m$.

Proof: (2)

Applying to the "Division Algorithm", there exist integers q and r such that $m = q_n^n + r$, where $0 \le r < n$. Thus

$$= (a^n)^q a^r = a^r = a^m = a^{nq+r} = e$$
$$a^m = a^{nq+r}$$

Since n is the smallest positive integer such that $a^n = e$, $:= (a^4)^q a^r$ implies that r = 0, hence m = qn or equivalently $n/m_- = e \cdot a^r$

Definition:

Let *G* be a

Let G be a group and $a \in G$, the order of a is the -order of

Example:

$$Z_{6} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$$

$$0(\overline{5}) = 0 < \overline{5} >= \{\overline{5}, \overline{4}, \overline{3}, \overline{2}, \overline{1}, \overline{0}\} = 6$$

$$0(\overline{1}) = 6$$

$$0(\overline{2}) = 0 < \overline{2} >= \{\overline{2}, \overline{4}, \overline{0}\} = 3$$

$$0(\overline{3}) = \{\overline{3}, \overline{0}\} = 2$$

Definition:

Let H and K be a nonempty sugroups of a group G the product of H and K denoted by HK is the set $HK = \{hk: h \in H, k \in K\}$. In case $H = \{a\}$, then $\{a\}K = aK = \{ak: k \in K\}$

Example:

$$\begin{aligned} \mathbf{G} &= \mathbf{S}_3, \, \text{let H} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\} \\ \mathbf{K} &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \\ \mathbf{HK} &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\} \\ \mathbf{KH} &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\} \\ \mathbf{HK} &\neq \, \mathbf{KH} \\ \mathbf{Q} \text{:Is HK a subgroup of G} \\ \mathbf{HK} \text{ is not subgroup since} \end{aligned}$$

HK is not subgroup since

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \notin HK$$

Example:

Let L be a subgroup

$$L = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

$$\begin{split} & \text{KL} \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -i & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\} \\ & LK \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\} \\ & \text{HL} \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\} \\ & LH \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\} \\ & LH \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1$$

Corollary:

- (1) Let $G = \langle a \rangle$ of order n, then n the smallest positive integer such that $a^n = e$.
- (2) Let $G = \langle a \rangle$, if O(G) = n and $a^m = e$, then $n \setminus m$.

Proof:

Appling to the "Division Algorithm", there exist integers q and r such that m = qn + r, where $0 \le r < n$. Thus

$$e = a^m = a^{nq+r} = (a^n)^q \cdot a^t = a^r$$

Since n is the smallest positive integer such that $a^n = e$, implies that r = 0, hence m = qn or equivalently $n \setminus m$

Definition: Let G be a group and $a \in G$, the order of a is the order of < a >.

Example:
$$Z_6 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}}$$

 $0(\overline{5}) = 0 < \overline{5} >= {\overline{5}, \overline{4}, \overline{3}, \overline{2}, \overline{1}, \overline{0}} = 6$
 $0(\overline{1}) = 6$
 $0(\overline{2}) = 0 < \overline{2} >= {\overline{2}, \overline{4}, \overline{0}} = 3$
 $0(\overline{3}) = {\overline{3}, \overline{0}} = 2$

Definition: Let H and K be a nonempty subsets of a group G the product of H and K denoted by HK is the set $HK = \{hk: h \in H, k \in K\}$ in case

$$H = \{a\}, \text{ then } \{a\}K = aK = \{ak: k \in K\}$$

Example:
$$G = S_3$$
, let $H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$

$$K = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

$$HK = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\}$$

$$KH = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

$$HK \neq KH$$

Q:Is HK a subgroup of G

HK is not subgroup since

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \notin HK$$
Example:

$$L = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}, \text{ is a subgroup}$$

$$\text{KL} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

$$\text{LK} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$$

$$\begin{aligned} \text{LH} &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \\ \text{HL} &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\} \\ \text{Theorem: Let H and K be subgroups of a group G then HK is subgroup if}$$

Theorem: Let H and K be subgroups of a group G then HK is subgroup if and only if HK = KH.

Proof: \Rightarrow) let $y \in HK$, HK is subgroup then $y^{-1} \in HK$, and $y^{-1} = hk$, $h \in H$, $k \in K$ $y = (y^{-1})^{-1} = (hk)^{-1} = k^{-1} h^{-1}$ (H,K are subgroups) then $k^{-1} \in K$ and $h^{-1} \in H$ $v = k^{-1} h^{-1} \in KH$, then $HK \subseteq KH$ let $x \in KH$, then x = kh $x^{-1} = h^{-1}k^{-1} \in HK$, but HK is subgroup then $(x^{-1})^{-1} \in HK$, and $x \in HK$ hence $KH \subseteq HK$ thus HK = KH. \Leftrightarrow)HK $\neq \emptyset$ (since e \in H, e \in K) $e = e, e \in HK$ Let $a \in HK \Rightarrow a = h_1k_1$; $h_1 \in H$, $k_1 \in K$ $b \in HK \Rightarrow b = h_2k_2; h_2 \in H, k_2 \in K$ $(ab^{-1}) = (h_1k_1)(h_2k_2)^{-1} = (h_1k_1)(k_2^{-1}h_2^{-1}) = h_1(k_1k_2^{-1})h_2^{-1} =$ $h_1k_3h_3^{-1}$ such that $k_3 = k_1 k_2^{-1}$ $k_3 h_2^{-1} \in KH = HK$ $k_3 h_2^{-1} \in HK, k_3 h_2^{-1} = hk; h \in H, k \in K$ hence $ab^{-1} = h_1 hk = h_3 \dot{k} \in HK(h_3 = h_1 h)$

Thus HK is subgroup.

Corollarv: Let H and K be subgroups of an abelian group G then HK is subgroup.

Definition: Let G be a group and H is subgroup of G, for each $a \in G$ the set $aH = \{ah: h \in H\}$ is called the left coset of H in G. The element a is called a representative of aH. In similar way we can define the right coset.

Example:
$$G = Z_6$$
, $H = {\overline{0}, \overline{2}, \overline{4}}$
 $\overline{0} + {6}{\overline{0}, \overline{2}, \overline{4}} = {\overline{0}, \overline{2}, \overline{4}}$
 $\overline{1} + {6}{\overline{0}, \overline{2}, \overline{4}} = {\overline{1}, \overline{3}, \overline{5}}$

$$\overline{2} + {}_{6}{\{\overline{0}, \overline{2}, \overline{4}\}} = {\{\overline{2}, \overline{4}, \overline{0}\}} = H$$

$$\overline{3} + {}_{6}{\{\overline{0},\overline{2},\overline{4}\}} = {\{\overline{3},\overline{5},\overline{1}\}}$$

$$\overline{4} + {}_{6}{\overline{0}}, \overline{2}, \overline{4} = {\overline{4}}, \overline{0}, \overline{2} = H$$

$$\overline{5} + {}_{6}{\{\overline{0},\overline{2},\overline{4}\}} = {\{\overline{5},\overline{1},\overline{3}\}}$$

Remark: Let H be a subgroup of a group G, let $a \in G$ then there is (1-1) and onto function from H into aH.

Proof: \emptyset : H \rightarrow aH, defined by \emptyset (h) = ah

To show that \emptyset is 1-1

$$x, y \in H, \emptyset(x) = \emptyset(y), ax = ay \Rightarrow x = y$$

hence \emptyset is (1-1)

To show that Ø is onto

Let $w \in aH$, $w = ah_1$; $h_1 \in H$

Thus $\emptyset(h_1) = w$, and \emptyset is onto

Remark: Let H be a subgroup of G, define \sim on G by a \sim b if and only if $ab^{-1} \in H$, then \sim equivalence relation.

$$\forall a \in G, a \sim a(since aa^{-1} = e \in H)$$

$$a \sim b \Rightarrow b \sim a$$

$$[ab^{-1} \in H \Rightarrow (ba^{-1})^{-1} \in H \Rightarrow b^{-1}a \in H]$$

$$a \sim b \Rightarrow ab^{-1} \in H$$

 $b \sim c \Rightarrow bc^{-1} \in H$, since H is a subgroup

then
$$(ab^{-1})(bc^{-1}) \in H$$

$$a(b^{-1} b)c^{-1} = ac^{-1} \in H$$

This relation is equivalence relation on G, hence partition G into equivalence classes [a]

$$[a] = \{x \in G: a \sim x\}$$

Definition: Let G be a group and H be a subgroup of G, the number of distinct left cosets of H in G is denoted by [G:H] and is called the index of H in G.

Theorem: (Lagrange) Let H be a subgroup of a finite group G , then $0(G)=0(H)[G\!:\!H]$

Corollary: Let H be a subgroup of a finite group G, then the order of H and index of H divide O(G).

Example: There is no subgroup of order 4 in a group of order 10.