$\exists n \in z^+$ \boldsymbol{n} $\mathbf{1}$ \boldsymbol{n} \lt

The densely of rational numbers النسبية االعداد كثافة

Theorem: Let $a, b \in \mathbb{R}$ such that $a < b$, then there exists $r \in Q$ such that

 $a < r < b$

بين اي عددين حقيقيين يوجد عدد نسبي واحد على االقل

Corollary:

Let $a, b \in \mathbb{R}$ such that $a < b$, then there exists a countable infinite set of rational numbers between a and b .

Proof: since $a < b$

by the densely of rational numbers theorem, there exist r_1 s.t $a < r_1 < b$ similarly $a, r \in R$ and $a < r_1$, then also by the densely, there exists $r_2 \in Q$ s.t $a < r_2 < r_1$

In general between a & r_{n-1} , there exists $r_n \in Q$ s.t $a < r_n < r_1$

Hence, we have the countable infinite set $\{r_1, r_2, ..., r_n, ...\}$ of rational numbers between a and *.*

Lemma: If $r \in Q$ and $s \in Q'$, then $r + s \in Q'$

Proof: suppose that $r + s \notin Q'$, so that

$$
\rightarrow (r+s) - r \in Q
$$

\n
$$
\rightarrow (r+s) + (-r) \in Q
$$

\nbut $(r+s) - r = s \in Q C$!

Hence, $r + s \in Q'$

The density of irrational numbers نسبية الغير االعداد كثافة

Let $a, b \in \mathbb{R}$ and $a < b$, then the exists $s \in \varphi'$ such that $a < s < b$.

Proof: Suppose that theorem is not true.

so that by the density of rational numbers theorem, there exists $s \in Q$ such that $a < s <$ \boldsymbol{b}

Since $\sqrt{2} \in Q'$ and $s \in Q$, thus by preceding Lemma we get

 $s + \sqrt{2} \in Q'$

Note that

 $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$

 $-8 - 8 - 8 - 8 - 8 - 8 - 8 - 8$

 $\frac{3}{20} - \frac{9}{20} - \frac{9}{20}$

 $\frac{1}{2}$

 $\frac{8}{6}$ $\frac{8}{6}$

 $\frac{1}{2}$

 $\frac{3}{60} - \frac{3}{60} - \frac{3}{60} - \frac{3}{60} - \frac{3}{60} - \frac{3}{60} - \frac{3}{60}$

 $\overline{}$

 $\frac{8}{100}$

 $\frac{1}{2}$ $\frac{1}{2}$ ।
ஃ

$$
a + \sqrt{2} < s + \sqrt{2} < b + \sqrt{2} \n\in < \in < \in < \in < \infty \n\mathbb{R} \qquad Q' \qquad \mathbb{R}
$$

∴ ∄ rational number between $a + \sqrt{2}$ and $b + \sqrt{2}$ C !

(with densely of rational numbers)

 $-\frac{3}{2}-\frac{$

Chapter Three

The complex numbers

Definition: The set of complex numbers is denoted by

 $\mathbb{C} = \{(a, b); a, b \in \mathbb{R}\}\$

Define $(+)$ and $(.)$ on $\mathbb C$ as follows

Let
$$
Z_1 = (a_1, b_1), Z_2 = (a_2, b_2)
$$
, then

1. $z_1 + z_2 = (a_1 + a_2, b_1 + b_2)$ 2. $z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2, a_1 b_2 + a_2 b_1)$

For example

Let $z_1 = (3,4) \& z_2 = (-1,2)$

 $z_1 + z_2 = (3 - 1.4 + 2) = (2.6)$ $z_1 \cdot z_2 = (-3 - 8.6 - 4) = (-11.2)$

Proposition:

Let $z_1, z_2, z_3 \in \mathbb{C}$, then

- 1. $z_1 + z_2 = z_2 + z_1$
- 2. $z_1 + (z_2 + z_3) = (z_1 + z_2)$
- 3. If $0 = (0,0)$, then $Z + 0 = 0 + Z = Z$

4. $\forall z \in \mathbb{C}$, there exists element denoted by $(-z)$ such that $z + (-z) = 0$

In fact, if $z = (a, b)$ then $-z = (-a, -b)$ 5. $z_1 \cdot z_2 = z_2 \cdot z_1$ 6. $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2)$

7. If $1 = (1,0)$, then $1 \cdot z = z \cdot 1 = z$.

8- If $z \in \mathbb{C}, z \neq 0$, then there exists element denoted by z^{-1} such that

$$
z\cdot z^{-1}=z^{-1}\cdot z=1
$$

 z^{-1} is called multiplication inverse.

9.
$$
z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 z_3
$$

Proof:

8. Let
$$
z \in \mathbb{C}
$$
 s.t $z = (a, b) \neq (0, 0) \rightarrow a^2 + b^2 > 0$

we define $z^{-1} = \left(\frac{a}{z^2}\right)$ $\frac{a}{a^2+b^2}$, $\frac{-}{a^2+b^2}$ $\frac{-b}{a^2+b^2}$

$$
z \cdot z^{-1} = \left(a \left(\frac{a}{a^2 + b^2} \right) + b \left(\frac{b}{a^2 + b^2} \right), a \left(\frac{-b}{a^2 + b^2} \right) + b \left(\frac{a}{a^2 + b^2} \right) \right)
$$

$$
= \left(\frac{a^2 + b^2}{a^2 + b^2}, 0 \right) = (1, 0) = 1
$$

For example

1. $z = (3/4) \rightarrow z^{-1} = \left(\frac{3}{2}\right)$ $\frac{3}{25}, \frac{-4}{25}$ 2. $z = (2, -1) \rightarrow z^{-1} = \left(\frac{2}{z}\right)$ $\frac{2}{5}, \frac{1}{5}$ $\frac{1}{5}$ 3. $z = (1,0) \rightarrow z^-$

Another definition to complex numbers

If $a, b \in \mathbb{R}$, then we can define the complex number z as follows:

$$
z = a + ib
$$
, where $i = (0,1)$.

ie

 $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$

 $3^{\circ} - 3^{\circ} - 3^{\circ} - 3^{\circ} -$

 $\frac{8}{6}$ $\frac{8}{6}$

$$
z = (a, b) = (a, 0) + (0, b) = a(1, 0) + (0, 1)b
$$

= a. 1 + ib
= a + ib

Example:

1. Let
$$
z_1 = 3 + 2i
$$
, $z_2 = 6 + 8i$, then
\na)
\n
$$
z_1 + z_2 = (3 + 2i) + (6 + 8i) = (3 + 6) + (2 + 8)i
$$
\n
$$
= 9 + 10i
$$

b)

$$
z_1 \cdot z_2 = (3+2i) \cdot (6+8i) = [(3)(6) - (2)(8)] + i[(2)(6) + (3)(8)]
$$

= (18-16) + (12+24)i
= 2 + 36i

2. i^2

 $3(3 + 2i) - 2(2 - 3i) + (6 + 8i)$ $=$ 9 + 6*i* - 4 + 6*i* + 6 + 8*i* $=11 + 20i$

Remark: If $z = a + ib$ be a complex number, then *a* is called real part of *z*, and *b* is called imaginary part of z. i.e

 $a = \text{Re}(z)$, $b = \text{Im}(z)$

Example:

1. If $z = 3 + 2i$, then Re(z) = 3, Im(z) = 2

2.
$$
z = 10
$$
, Re $(z) = 10$, Im $(z) = 0$

3. $z = 2i$, Re(z) = 0, Im(z) = 2

Proposition: Let $z_1, z_2 \in \mathbb{C}$, then

(1) Re $(z_1 + z_2)$ = Re (z_1) + Re (z_2)

(2)
$$
\text{Im}(Z_1 + Z_2) = \text{Im}_m(Z_1) + \text{Im}_m(Z_2).
$$

Proof:

Let $z_1 = a_1 + ib_1 \& z_2 = a_2 + ib_2$

 $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$ $Re(z_1 + z_2) = a_1 + a_2 = Re(z_1) + Re(z_2)$

 $\text{Im}(z_1 + z_2) = b_1 + b_2 = \text{Im}(z_1) + \text{Im}_m(z_2)$

Definition: Let $z \in \mathbb{C}$, $z = a + ib$, we define |z| by

 $|z| = \sqrt{a^2 + b^2}$ is called absolute value of z.

Example:

1.
$$
z = 3 + 4i
$$
, $|z| = \sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5$

2.
$$
z = -2i
$$
, $|z| = \sqrt{(-2)^2} = \sqrt{4} = 2$

3.
$$
z = i, |z| = \sqrt{(1)^2} = 1
$$

1. $|z| \ge 0$ and $|z| = 0$ if $z = 0$

2. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ 3. $|z_1 + z_2| \leq |z_1| + |z_2|$ 4. $||z_1| - |z_2|| \le |z_1 - z_2|$

Proof:

 \sim \sim \sim \sim \sim

。。。。。

2. Let
$$
z_1 = a_1 + ib_1
$$
, $z_2 = a_2 + ib_2$
\n
$$
|z_1 \cdot z_2| = |(a_1 + ib_1) \cdot (a_2 + ib_2)| = |(a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)|
$$
\n
$$
= \sqrt{(a_1a_2 - b_1b_2)^2 + (a_1b_2 + a_2b_1)^2}
$$
\n
$$
|z_1 \cdot z_2|^2 = (a_1a_2 - b_1b_2)^2 + (a_1b_2 + a_2b_1)^2
$$
\n
$$
= a_1^2a_2^2 - 2a_1a_2b_1b_2 + b_1^2b_2^2 + a_1^2b_2^2 + 2a_1b_2a_2b_1 + a_2^2b_1^2
$$
\n
$$
|z_1 \cdot z_2|^2 = (a_1^2 + b_1^2)(a_2^2 + b_2^2) = |z_1|^2|z_2|^2 = (|z_1||z_2|)^2
$$
\n
$$
\therefore |z_1 \cdot z_2| = |z_1||z_2|
$$
\n4. Note that $z_1 = z_2 + (z_1 - z_2)$
\n
$$
|z_1| = |z_2 + (z_1 - z_2)| \le |z_2| + |z_1 - z_2|
$$
\n
$$
\Rightarrow |z_1 - z_2| \ge |z_1| - |z_2| \dots (1)
$$
\n
$$
z_2 = z_1 + (z_2 - z_1)
$$
\n
$$
|z_2| = |z_1 + (z_2 - z_1)|
$$
\n
$$
|z_2| = |z_1 + (z_2 - z_1)|
$$
\n
$$
\Rightarrow |z_2| - |z_1| \le |z_2 - z_1|
$$
\n
$$
\Rightarrow |z_2| - |z_1| \le |z_2 - z_1|
$$
\n
$$
\Rightarrow (|z_1| - |z_2|) \le |z_1 - z_2| \dots (2)
$$
\nfrom (1)&(2) we get

 $||z_1| - |z_2|| \leq |z_1 - z_2|$

Corollary: For each finite $z_1, z_2, ..., z_n$ of complex number. Then

1.
$$
|z_1 \tcdot z_2 \tcdots z_n| = |z_1||z_2| \tcdots |z_n|
$$

2- If $z_1, z_2 \tcdots z_n \neq 0$, then $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

Proof:

1. We know that $|z_1 \cdot z_2| = |z_1||z_2|$

$$
|z_1 \cdot z_2 \cdot z_3| = |z_1||z_2||z_3|
$$

\n
$$
|z_1 \cdots z_n| = |z_1||z_2| \cdots - |z_n|
$$

\n2. Let $w = \frac{z_1}{z_2} \rightarrow z_1 = wz_2$.
\n
$$
|z_1| = |wz_2| = |w||z_2| \rightarrow |w| = \frac{|z_1|}{|z_2|}
$$

\n
$$
\therefore \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}
$$

Definition: Let $z = a + ib$ be a complex number then the complex number $a - ib$ is called conjugate of z and denoted by \bar{z} .

i.e $\bar{z} = a - ib$

Proposition:

1- For each complex number z.

$$
z \cdot \bar{z} = |z|^2, \quad \bar{z} = z
$$

\n2. $\forall z_1, z_2 \in \mathbb{C}, \overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}$
\n3. $\forall z_1, z_2 \in \mathbb{C}, \overline{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}$
\n4. $\forall z_1, z_2 \in \mathbb{C}, z_2 \neq 0$, then $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$.
\n5. $\forall z \in \mathbb{C}, |z| = |\bar{z}|$
\n6. If $z \neq 0$, then $z^{-1} = \frac{\overline{z}}{|z|^2}$

Proof:

1-Let
$$
Z = a + ib \rightarrow \bar{Z} = a - ib
$$

\n $z \cdot \bar{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2$.
\n $\bar{z} = (a - ib) = a + ib = z$.

2. Let $Z_1 = a_1 + ib_1, Z_2 = a_2 + ib_2$

$$
z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)
$$

\n
$$
\overline{z_1 + z_2} = (a_1 + a_2) - i(b_1 + b_2) \cdots (1)
$$

\n
$$
\overline{z_1} + \overline{z_2} = (a_1 - ib_1) + (a_2 - ib_2) = (a_1 + a_2) - i(b_1 + b_2)
$$

From (1) &(2) we get $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$