$\exists n \in z^+ \text{ s.t } na > b$ $n \in > 1 \longleftrightarrow \frac{1}{n} < \epsilon$

The densely of rational numbers

كثافة الاعداد النسبية

Theorem: Let $a, b \in \mathbb{R}$ such that a < b, then there exists $r \in Q$ such that

a < r < b

بين اي عددين حقيقيين يوجد عدد نسبي واحد على الاقل

Corollary:

Let $a, b \in \mathbb{R}$ such that a < b, then there exists a countable infinite set of rational numbers between a and b.

Proof: since *a* < *b*

by the densely of rational numbers theorem, there exist r_1 s.t $a < r_1 < b$ similarly $a, r \in R$ and $a < r_1$, then also by the densely, there exists $r_2 \in Q$ s.t $a < r_2 < r_1$

In general between a & r_{n-1} , there exists $r_n \in Q$ s.t $a < r_n < r_1$

Hence, we have the countable infinite set $\{r_1, r_2, ..., r_n, ...\}$ of rational numbers between *a* and *b*.

Lemma: If $r \in Q$ and $s \in Q'$, then $r + s \in Q'$

Proof: suppose that $r + s \notin Q'$, so that $r + s \in Q'$

$$\rightarrow (r+s) - r \in Q$$

$$\rightarrow (r+s) + (-r) \in Q$$

but $(r+s) - r = s \in Q C$!

Hence, $r + s \in Q'$

The density of irrational numbers

كثافة الاعداد الغير نسبية

Let $a, b \in \mathbb{R}$ and a < b, then the exists $s \in \varphi'$ such that a < s < b.

Proof: Suppose that theorem is not true.

so that by the density of rational numbers theorem, there exists $s \in Q$ such that a < s < b

Since $\sqrt{2} \in Q'$ and $s \in Q$, thus by preceding Lemma we get

 $\mathrm{s}+\sqrt{2}\in Q'$

Note that

$$\begin{array}{ccc} a + \sqrt{2} < s + \sqrt{2} & < b + \sqrt{2} \\ \in & \in \\ \mathbb{R} & Q' & \mathbb{R} \end{array}$$

∴ \nexists rational number between $a + \sqrt{2}$ and $b + \sqrt{2}$ C!

00000

(with densely of rational numbers)

Chapter Three

The complex numbers

Definition: The set of complex numbers is denoted by

$$\mathbb{C} = \{(a, b); a, b \in \mathbb{R}\}$$

Define (+) and (.) on \mathbb{C} as follows

Let
$$Z_1 = (a_1, b_1), Z_2 = (a_2, b_2)$$
, then

1. $z_1 + z_2 = (a_1 + a_2, b_1 + b_2)$ 2. $z_1 \cdot z_2 = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1)$

For example

Let
$$z_1 = (3,4) \& z_2 = (-1,2)$$

 $z_1 + z_2 = (3 - 1, 4 + 2) = (2, 6)$ $z_1 \cdot z_2 = (-3 - 8, 6 - 4) = (-11, 2)$

Proposition:

Let $z_1, z_2, z_3 \in \mathbb{C}$, then

- 1. $z_1 + z_2 = z_2 + z_1$
- 2. $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$
- 3. If 0 = (0,0), then Z + 0 = 0 + Z = Z
- 4. $\forall z \in \mathbb{C}$, there exists element denoted by (-z) such that z + (-z) = 0

In fact, if z = (a, b) then -z = (-a, -b)5. $z_1 \cdot z_2 = z_2 \cdot z_1$

6.
$$z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$$

7. If 1 = (1,0), then $1 \cdot z = z \cdot 1 = z$.

8- If $z \in \mathbb{C}$, $z \neq 0$, then there exists element denoted by z^{-1} such that

$$z \cdot z^{-1} = z^{-1} \cdot z = 1$$

 z^{-1} is called multiplication inverse.

9.
$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 z_3$$

Proof:

8.

0°0 0°0

°°°

\$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6

8. Let
$$z \in \mathbb{C}$$
 s.t $z = (a, b) \neq (0, 0) \rightarrow a^2 + b^2 > 0$
we define $z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$
 $z \cdot z^{-1} = \left(a\left(\frac{a}{a^2 + b^2}\right) + b\left(\frac{b}{a^2 + b^2}\right), a\left(\frac{-b}{a^2 + b^2}\right) + b\left(\frac{a}{a^2 + b^2}\right)\right)$
 $= \left(\frac{a^2 + b^2}{a^2 + b^2}, 0\right) = (1, 0) = 1$

For example

1. $z = (3/4) \rightarrow z^{-1} = \left(\frac{3}{25}, \frac{-4}{25}\right)$ 2. $z = (2, -1) \longrightarrow z^{-1} = \left(\frac{2}{5}, \frac{1}{5}\right)$ 3. $z = (1,0) \longrightarrow z^{-1} = (1,0)$

Another definition to complex numbers

If $a, b \in \mathbb{R}$, then we can define the complex number *z* as follows:

$$z = a + ib$$
, where $i = (0,1)$.

ie

$$z = (a, b) = (a, 0) + (0, b) = a(1, 0) + (0, 1)b$$

= a. 1 + ib
= a + ib

Example:

1. Let
$$z_1 = 3 + 2i$$
, $z_2 = 6 + 8i$, then
a)
 $z_1 + z_2 = (3 + 2i) + (6 + 8i) = (3 + 6) + (2 + 8)i$
 $= 9 + 10i$

b)

$$z_1 \cdot z_2 = (3+2i) \cdot (6+8i) = [(3)(6) - (2)(8)] + i[(2)(6) + (3)(8)]$$

= (18 - 16) + (12 + 24)i
= 2 + 36i

2. $i^2 = i \cdot i = (0,1).(0,1) = (0 - 1,0) = (-1,0) = -1(1,0) = -1$

$$3(3+2i) - 2(2-3i) + (6+8i)$$

=9+6i-4+6i+6+8i
=11+20i

Remark: If z = a + ib be a complex number, then *a* is called real part of *z*, and *b* is called imaginary part of *z*. i.e

 $a = \operatorname{Re}(z), b = \operatorname{Im}(z)$

Example:

1. If z = 3 + 2i, then Re(z) = 3, Im(z) = 2

2.
$$z = 10$$
, $\operatorname{Re}(z) = 10$, $\operatorname{Im}(z) = 0$

3. z = 2i, Re(z) = 0, Im(z) = 2

Proposition: Let $z_1, z_2 \in \mathbb{C}$, then

(1) $\operatorname{Re}(z_1 + z_2) = \operatorname{Re}(z_1) + \operatorname{Re}(z_2)$

(2) $\operatorname{Im}(Z_1 + Z_2) = \operatorname{Im}_m(Z_1) + \operatorname{Im}_m(Z_2).$

Proof:

Let $z_1 = a_1 + ib_1 \& z_2 = a_2 + ib_2$

 $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$ $\therefore \operatorname{Re}(z_1 + z_2) = a_1 + a_2 = \operatorname{Re}(z_1) + \operatorname{Re}(z_2).$

 $Im(z_1 + z_2) = b_1 + b_2 = Im(z_1) + Im_m(z_2)$

Definition: Let $z \in \mathbb{C}$, z = a + ib, we define |z| by

 $|z| = \sqrt{a^2 + b^2}$ is called absolute value of z.

Example:

1.
$$z = 3 + 4i$$
, $|z| = \sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5$
2. $z = -2i$, $|z| = \sqrt{(-2)^2} = \sqrt{4} = 2$

3.
$$z = i$$
, $|z| = \sqrt{(1)^2} = 1$

1. $|z| \ge 0$ and |z| = 0 if z = 0

 $\begin{array}{l} 2. \ |z_1 \cdot z_2| = |z_1| \cdot |z_2| \\ 3. \ |z_1 + z_2| \leqslant |z_1| + |z_2| \\ 4. \ ||z_1| - |z_2|| \leqslant |z_1 - z_2| \end{array}$

Proof:

°°°

00

2. Let
$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2$$

 $|z_1 \cdot z_2| = |(a_1 + ib_1) \cdot (a_2 + ib_2)| = |(a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$
 $= \sqrt{(a_1a_2 - b_1b_2)^2 + (a_1b_2 + a_2b_1)^2}$
 $|z_1 \cdot z_2|^2 = (a_1a_2 - b_1b_2)^2 + (a_1b_2 + a_2b_1)^2$
 $= a_1^2a_2^2 - 2a_1a_2b_1b_2 + b_1^2b_2^2 + a_1^2b_2^2 + 2a_1b_2a_2b_1 + a_2^2b_1^2$
 $|z_1 \cdot z_2|^2 \doteq (a_1^2 + b_1^2)(a_2^2 + b_2^2) = |z_1|^2|z_2|^2 = (|z_1||z_2|)^2$
 $\therefore |z_1 \cdot z_2| = |z_1||z_2|$
4. Note that $z_1 = z_2 + (z_1 - z_2)$
 $|z_1| = |z_2 + (z_1 - z_2)| \le |z_2| + |z_1 - z_2|$
 $\Rightarrow |z_1| \le |z_2| + |z_1 - z_2|$

$$\Rightarrow |z_1| \leq |z_2| + |z_1 - z_2|
\Rightarrow |z_1 - z_2| \geq |z_1| - |z_2| \dots (1)
z_2 = z_1 + (z_2 - z_1)
|z_2| = |z_1 + (z_2 - z_1)|
|z_2| \leq |z_1| + |z_2 - z_1|
\Rightarrow |z_2| - |z_1| \leq |z_2 - z_1|
\Rightarrow -(|z_1| - |z_2|) \leq |z_1 - z_2| \dots (2)
from (1)&(2) we get
||z_1| - |z_2|| \leq |z_1 - z_2|$$

Corollary: For each finite $z_1, z_2, ..., z_n$ of complex number. Then

1.
$$|z_1 \cdot z_2 \cdots z_n| = |z_1| |z_2| \cdots |z_n|$$

2- If $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$, then $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$

Proof:

1. We know that $|z_1 \cdot z_2| = |z_1||z_2|$

$$|z_{1} \cdot z_{2} \cdot z_{3}| = |z_{1}||z_{2}||z_{3}|$$

$$\vdots$$

$$|z_{1} \cdots \cdots z_{n}| = |z_{1}||z_{2}| \dots - |z_{n}|$$

2. Let $w = \frac{z_{1}}{z_{2}} \rightarrow z_{1} = wz_{2}$.

$$|z_{1}| = |wz_{2}| = |w||z_{2}| \rightarrow |w| = \frac{|z_{1}|}{|z_{2}|}$$

$$\therefore \left|\frac{z_{1}}{z_{2}}\right| = \frac{|z_{1}|}{|z_{2}|}$$

Definition: Let z = a + ib be a complex number then the complex number a - ib is called conjugate of z and denoted by \overline{z} .

i.e $\bar{z} = a - ib$

Proposition:

1- For each complex number *z*.

$$z \cdot \overline{z} = |z|^{2}, \quad \overline{z} = z$$
2. $\forall z_{1}, z_{2} \in \mathbb{C}, \overline{z_{1} + z_{2}} = \overline{z}_{1} + \overline{z}_{2}$
3. $\forall z_{1}, z_{2} \in \mathbb{C}, \overline{z_{1} \cdot z_{2}} = \overline{z}_{1} \cdot \overline{z}_{2}$
4. $\forall z_{1}, z_{2} \in \mathbb{C}, z_{2} \neq 0$, then $\overline{\left(\frac{z_{1}}{z_{2}}\right)} = \frac{\overline{z}_{1}}{\overline{z}_{2}}$.
5. $\forall z \in \mathbb{C}, |z| = |\overline{z}|$
6. If $z \neq 0$, then $z^{-1} = \frac{\overline{z}}{|z|^{2}}$

Proof:

1-Let
$$Z = a + ib \rightarrow \overline{Z} = a - ib$$

 $z \cdot \overline{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2$.
 $\overline{\overline{z}} = \overline{(a - ib)} = a + ib = z$.
2. Let $Z_1 = a_1 + ib_1, Z_2 = a_2 + ib_2$
 $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$

 $\frac{z_1 + z_2}{z_1 + z_2} = (a_1 + a_2) + i(b_1 + b_2)$ $\frac{z_1 + z_2}{z_1 + z_2} = (a_1 + a_2) - i(b_1 + b_2) \cdots (1)$ $\frac{z_1 + z_2}{z_1 + z_2} = (a_1 - ib_1) + (a_2 - ib_2) = (a_1 + a_2) - i(b_1 + b_2)$

From (1) &(2) we get $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$