

جامعة بغداد كلية العلوم للبنات قسم الرياضيات المرحلة الاولى

اسس الرياضيات]]

Fundamental of Mathematics II

م.د. شیرین عودة دخیل م.د. ایناس مصطفی کامل 2024-2023

Chapter One

The natural numbers and integers

Principle of mathematical induction

مبدأ الاستقراء الرياضى

Let S be a subset of \mathbb{N} , the natural numbers, with the following properties:-

1. $1 \in S$

2. $n \in S$ implies $n + 1 \in S$

Then *S* is the set of natural numbers (ie. $S = \mathbb{N}$).

The way of using principle of mathematical induction:-

*) suppose that p(n) is a statement depend on natural number n.

*) Suppose that S be a solution set of natural numbers n such that the statement is true

i.e $S = \{n \in \mathbb{N}; p(n) \text{ is true } \}$

we shall prove that

1. $1 \in S$ (i.e p(1) is true)

2. Suppose that p(k) is true. (i.e $k \in S$)

3.
$$p(k + 1)$$
 is true. (i.e $k + 1 \in S$)

so that, $S = \mathbb{N}$

i.e p(n) is true $\forall n$

Example: prove that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$, $\forall n \ge i$

Solution: suppose that p(n) is $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

and $S = \{n \in \mathbb{N}: P(n) \text{ is true } \}$

1. Since
$$\frac{1(1+1)}{2} = \frac{2}{2} = 1$$

hence p(1) is true (i.e $1 \in S$)

2. Suppose that p(k) is true

i.e $1 + 2 + \dots + k = \frac{k(k+1)}{2}$

We have to show that $1 + 2 + 3 + \dots + k + (k + 1) = \frac{(k+1)[(k+1)+1]}{2}$

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)(k+1)(k+1)(k+1) + \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2} = \frac{(k+1)(k+2)}{2} = \frac{(k+1)[(k+1) + 1]}{2}$$

So that p(k + 1) is true (i.e. $k + 1 \in S$)

Hence P(n) is true $\forall n \ge 1$.

Example: Prove that $\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3} \forall n \in \mathbb{N}$

Solution: Suppose that p(n) is $\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}$

i.e
$$(1)^2 + (3)^2 + (5)^2 + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

Since $(1)^2 = \frac{1(2-1)(2+1)}{3} = 1$, hence p(1) is true.

Suppose that p(k) is true

<u>o</u>o oo oo oo oo oo oo oo oo oo oo

i.e
$$1^2 + 3^2 + 5^2 + \dots + (2k - 1)^2 = \frac{k(2k - 1)(2k + 1)}{3} \dots (*)$$

Now, we prove that $\rho(k+1)$ is true

$$1^{2} + 3^{2} + \dots + (2k-1)^{2} + (2(k+1)-1)^{2} = \frac{(k+1)(2(k+1)-1)(2(k+1)+1)}{3}$$

$$\therefore L^{2} + 3^{2} + \dots + (2k-1)^{2} + (2(k+1)-1)^{2} = (2k+1)(2k+1) + (2k+1)^{2}$$

$$= \frac{k(2k-1)(2k+1) + 3(2k+1)^{2}}{3}$$

$$= \frac{(2k+1)[k(2k-1) + 3(2k+1)]}{3}$$

$$= \frac{(2k+1)[k(2k-1) + 3(2k+1)]}{3}$$

$$= \frac{(2k+1)[k(2k+3)]}{3} = \frac{(k+1)(2k+3)(2k+3)}{3}$$

$$=\frac{(k+1)(2(k+1)-1)(2(k+1)+1)}{3}$$

So that, p(k + 1) is true.

Example: Prove that $2^{3n} - 1$ divide by $7 \forall n \ge 1$

Solution: Suppose that p(n) is $2^{3n} - 1$ divide by 7.

1. p(1) is true. Since $2^{3(1)} - 1 = 7$ divide by 7

2. Suppose that p(k) is true. i.e $2^{3k} - 1$ divide by 7

That is mean $\exists c \in Z$ s.t $2^{3k} - 1 = 7c$

Now, we have to show that, $\exists d \in z \text{ sit } 2^{3(k+1)} - 1 = 7d$

$$2^{3(k+1)} - 1 = 2^{3k+3} - 1 = 2^3 2^{3k} - 1$$

= 2³(7c + 1) - 1, since 2^{3k} - 1 = 7c
= 2³7c + 8 - 1
= 2³ · 7c + 7
= 7(2³c + 1)
= 7d, d = 2c + 1 \in z

So that $2^{3(k+1)}$ divide by 7

Hence P(n) is true $\forall n$

Piano's axioms

فرضيات بيانو

Theorem:

1- For each n, m ∈ N, there exist unique element n + m ∈ N is called summation n, m such that
a) n + 1 = n⁺
b) m + 1 = m⁺
c) n + m = m + n (Commutative Law)
d) ∀n, m, k ∈ N, (n + m) + k = n + (m + k) (associative Law)

e) If $m + n_1 = m + n_2$ then $n_1 = n_2$ (Cancellation Law)

2 - For each $n, m \in \mathbb{N}$, there exist unique element $m \cdot n \in \mathbb{N}$ is called multiplication elements n, m such that:

a) $m \cdot 1 = 1.m = m$ b) $n \cdot m = m \cdot n$ (Commutative Law) c) $(m \cdot n) \cdot k = m \cdot (n \cdot k)$ (associative Law)

d) $k \cdot (m+n) = k \cdot m + k \cdot n$

e) If $m \cdot n_1 = m \cdot n_2$ then $n_1 = n_2$

Theorem: For each $n \in \mathbb{N}$ then $n^+ \neq n$ (i.e n $+1 \neq n$)

Proof:

By using principle of mathematical intuition

Let S = {
$$n \in \mathbb{N}$$
; $n + 1 \neq n$ }

1. 1 ∈ S.

If $1 \notin S \longrightarrow 1 + 1 = 1 c !$

معناه (1) هو تابع و هذا تناقض مع فرضية بيانو

2. Suppose that $k \in S$

We have to show that $k^+ = k + 1 \in S$

Suppose that $k^+ \notin S$

So that $k^+ = k + 1 \in S$

By mathematical induction we get $S = \mathbb{N}$ **Definition:** Let $n, m \in \mathbb{N}$ then m < n iff there exists a unique $\dot{k} \in \mathbb{N}$ such that m + k = n.

Remark: For each $n \in \mathbb{N}$, n < n + 1.

Proposition: For each $n \in \mathbb{N}$, $n \neq 1$ then n > 1

(i.e 1 is smallest element in \mathbb{N})

Proof: Since $n \neq 1$ then *n* is successor for another element say *m* hence n = m + 1

 $\rightarrow m + 1 > 1$ $\rightarrow n > 1$

Proposition: Let $n, m \in \mathbb{N}$, if m < n then $m^+ \leq n$

Proof: Since $m < n \rightarrow \exists k \in \mathbb{N}$ s.t m + k = n, $k \ge 1$

1. If $k = 1 \rightarrow m + 1 = n \rightarrow m^+ = n$

2.If $k > 1 \rightarrow \exists t \in \mathbb{N}$ s.t k = t + 1.

 $\therefore n = m + k = m + (t + 1) = (m + 1) + t$ = m⁺ + t

 $\rightarrow m^+ < n$

From (1) and (2) we get $m^+ \leq n$

Proposition: For each $n \in \mathbb{N}$, then, $\nexists k \in \mathbb{N}$ s.t n < k < n + 1:

Proof:

Suppose that there exists $k \in \mathbb{N}$ s.t n < k < n + 1

Now,

 $n < k \to \exists k_1 \in \mathbb{N} \text{ s.t } n + k_1 = k$ $k < n + 1 \to \exists k_2 \in \mathbb{N} \text{ s.t } k + k_2 = n + 1$ $(n + k_1) + k_2 = n + 1 \to n + (k_1 + k_2) = n + 1$ $\to k_1 + k_2 = 1$ $\to k_1 < 1 \text{ C! since } k_1 \in \mathbb{N}$

Proposition: Let $m, n, k \in \mathbb{N}$. Then

- 1. Either m = n or m < n or n < m
- 2. If m < n and k < m then k < n
- 3. If m < n then m + t < n + t, $t \in \mathbb{N}$
- 4. If m < n, then mt < nt
- 5. If m + t < n + t then m < n

6. If mt < nt then m < n

Proof:

(1) If n = 1 or m = 1 then by preceding proposition the proof is clear [Suppose that $n \neq 1$ and $m = 1 \xrightarrow{\text{pro.}} n > 1 = m$] Thus suppose that $n \neq 1$ and $m \neq 1$, we use mathematical induction Let $S_1 = \{n\}, S_2 = \{x \in \mathbb{N}; x > n\}, S_3 = \{x \in \mathbb{N}; x < n\}$ Let $S = S_1 \cup S_2 \cup S_3$ $1.1 \in S$. Since $\forall n \in \mathbb{N} \& n \neq 1 \rightarrow n > 1$ $\rightarrow 1 \in S_3 \rightarrow 1 \in S$ 2. Let $k \in S \rightarrow k \in S_1$ or $k \in S_2$ or $k \in S_3$

Case (1): if
$$k \in S_1 \rightarrow k = n \rightarrow k^+ > n \rightarrow k^+ \in S_2 \rightarrow k^+ \in S_2$$

Case (2): $k \in S_2 \rightarrow k > n \rightarrow \exists t \in \mathbb{N}$ s.t

$$k = n + t \rightarrow k^{+} = (t + n)^{+}$$
$$= (t + n) + 1 = n + (t + 1)$$
$$\rightarrow k^{+} > n \rightarrow k^{+} \in S_{2} \rightarrow k^{+} \in S$$

Case (3): if $k \in S_3 \rightarrow k < n \rightarrow k^+ \leq n$

if $k^+ = n \longrightarrow k^+ \in S_1 \longrightarrow k^+ \in S$

 $\text{if }k^+ < n \rightarrow k^+ \in S_3 \longrightarrow k^+ \in S\\$

By (1),(2) &(3) $\forall k \in S \rightarrow k^+ \in S$, thus

by mathematical induction $S = \mathbb{N}$

- 2. $m < n \rightarrow \exists t_1 \in \mathbb{N} \text{ s.t } n = m + t_1$ $k < m \rightarrow \exists t_1 \in \mathbb{N} \text{ s.t } m = k + t_2$ $n = m + t_1 = (k + t_2) + t_1 = k + (t_1 + t_2)$ $n = k + t \in \mathbb{N}$; where $t = t_1 + t_2 \in \mathbb{N}$ $\rightarrow k < n$
- 3. $m < n \rightarrow \exists k \in \mathbb{N} \text{ s.t } n = m + k$

$$n + t = m + k + t$$
 (t إباضافة)
 $= (m + t) + k$