BIOLOGY DEPT.

THIRD STAGE

LEC 5

ENDOCRINE GLANDS: SECRETION AND ACTION OF HORMONES

Dr. Abeer Mohammed Hussain Dr. Israa Sekar Salman

2 - Adrenal Glands

Paired organs that cap the kidneys.

Each gland consists of an outer cortex and inner medulla.

Adrenal medulla:

- Derived from embryonic neural crest ectoderm (same tissue that produces the sympathetic ganglia).
- Synthesizes and secretes:
- Catecholamines (mainly Epi but some NE).
 - Adrenal cortex:
 - Does not receive neural innervation.
 - Must be stimulated hormonally (ACTH).
 - Consists of 3 zones:
 - Zona glomerulosa.
 - Zona fasciculata.
 - Zona reticularis.
 - Secretes corticosteroids.

Functions of the Adrenal gland

Functions of the Adrenal Cortex

Zona glomerulosa:

- Mineralcorticoids (aldosterone):
 - Stimulate kidneys to reabsorb Na⁺ and secrete K⁺.
- Zona fasciculata:
 - Glucocorticoids (cortisol):
 - Inhibit glucose utilization and stimulate gluconeogenesis.
- Zona reticularis (DHEA):
 - Sex steroids:
 - Supplement sex steroids.

Functions of the Adrenal Medulla

- Innervated by preganglionic sympathetic axons.
 - Increase respiratory rate.
 - Increase HR and cardiac output.
 - Vasoconstrict blood vessels, thus increasing venous return.
 - Stimulate glycogenolysis.
 - Stimulate lipolysis.

Stress and the Adrenal Gland

- Non-specific response to stress produces the general adaptation syndrome (GAS).
- Alarm phase:
 - Adrenal glands activated.
- Stage of resistance:
 - Stage of readjustment.
- Stage of exhaustion:
 - Sickness and/or death if readjustment is not complete.

3 - Thyroid Hormones

- Thyroid gland is located just below the larynx.
- Thyroid is the largest of the pure endocrine glands.
- Follicular cells secrete thyroxine.
- Parafollicular cells secrete calcitonin.

Production of Thyroid Hormones

T₃ and T₄ produced.

- TSH stimulates pinocytosis into the follicular cell.
 - Enzymes hydrolyze T₃ and T₄ from thyroglobulin.
 - Attached to TBG and released into blood.

3 - Thyroid Hormones

Production of Thyroid Hormones

- Iodide (I⁻) actively transported into the follicle and secreted into the colloid.
- Oxidized to iodine (I⁰).
- Iodine attached to tyrosine within thyroglobulin chain.
 - ➤ Attachment of 1 iodine produces monoiodotyrosine (MIT).
 - > Attachment of 2 iodines produces diiodotyrosine (DIT).

MIT and DIT or 2 DIT molecules coupled together.

Production of Thyroid Hormones

Action of T3

- Stimulates protein synthesis.
- Promotes maturation of nervous system.
- Stimulates rate of cellular respiration by:
 - Production of uncoupling proteins.
 - Increase active transport by Na⁺/K⁺ pumps.
 - Lower cellular [ATP].
- Increases metabolic heat.
- Increases metabolic rate.
 - Stimulates increased consumption of glucose, fatty acids and other molecules.

Diseases of the Thyroid Gland

1 - Iodine-deficiency (endemic) goiter:

- Abnormal growth of the thyroid gland.
 - In the absence of sufficient iodine, cannot produce adequate amounts of T_4 and T_3 .
 - Lack of negative feedback inhibition. Stimulates TSH, which causes abnormal growth.

Diseases of the Thyroid Gland

- Iodine-deficiency (endemic) goiter
- Adult myxedema:
 - Accumulation of mucoproteins and fluid in subcutaneous tissue.
- Symptoms:
 - Decreased metabolic rate. Weight gain. Decreased ability to adapt to cold. Lethargy.

2 - Grave's disease:

- Autoimmune disorder:
 - Exerts TSH-like effects on thyroid.
 - Not affected by negative feedback.

3 - Cretinism:

- Hypothyroid from end of 1st trimester to 6 months postnatally.
 - Severe mental retardation.

4 - Parathyroid Glands

- Embedded in the lateral lobes of the thyroid gland.
- Parathyroid hormone (PTH):
 - Only hormone secreted by the parathyroid glands.
- Single most important hormone in the control of blood [Ca²⁺].
- Stimulated by decreased blood [Ca²⁺].
- Promotes rise in blood [Ca²⁺] by acting on bones, kidney and intestines.

5 - Pancreatic Islets (Islets of Langerhans)

Alpha cells secrete glucagon.

- Stimulus is decrease in blood [glucose].
- Stimulates glycogenolysis and lipolysis.
- Stimulates conversion of fatty acids to ketones.

Beta cells secrete insulin.

- Stimulus is increase in blood [glucose].
- Promotes entry of glucose into cells.
- Converts glucose to glycogen and fat.
- Aids entry of amino acids into cells.

6 - Pineal Gland

Secretes melatonin:

- Production stimulated by the suprachiasmatic nucleus (SCN) in hypothalamus.
 - SCN is primary center for circadian rhythms.
 - Light/dark changes required to synchronize.
 - Melatonin secretion increases with darkness and peaks in middle of night.
- May inhibit GnRH.

May function in the onset of puberty (controversial).

Autocrine and Paracrine Regulation

- Autocrine:
 - Produced and act within the same tissue of an organ.
 - All autocrine regulators control gene expression in target cells.
- Paracrine:
 - Produced within one tissue and regulate a different tissue of the same organ.
- Cytokines (lymphokines):
 - Regulate different cells (interleukins).
- Growth factors:
 - Promote growth and cell division in any organ.
- Neutrophins:
 - Guide regenerating peripheral neurons.

Prostaglandins

- Most diverse group of autocrine regulators.
- Produced in almost every organ.
- Wide variety of functions.
- Different prostaglandins may exert antagonistic effects in some tissues.
- **Immune system: Promote inflammatory process.**
- **Reproductive system: Play role in ovulation.**
- Digestive system: Inhibit gastric secretion.
- Respiratory system: May bronchoconstrict or bronchodilate.
- Circulatory system: Vasoconstrictors or vasodilators.
- Urinary system: Vasodilation.

Prostaglandins

Inhibitors of prostaglandin synthesis

- Non-steroidal anti-inflammatory drugs (NSAIDS).
 - Aspirin, Indomethacin, Ibuprofen: inhibit COX1.
- Celecoxib and Rofecoxib: inhibit COX2.