LECTURE 2

NERVOUS SYSTEM
NEURONS AND SYNAPSES

Dr. Abeer Mohammed Hussain Dr. Israa Sekar Salman

NERVOUS SYSTEM

- **2 TYPES OF CELLS IN THE NERVOUS SYSTEM:**
 - **NEURONS.**
 - SUPPORTING CELLS.
- NERVOUS SYSTEM IS DIVIDED INTO:
 - CENTRAL NERVOUS SYSTEM (CNS):
 - BRAIN.
 - SPINAL CORD.
 - PERIPHERAL NERVOUS SYSTEM (PNS):
 - CRANIAL NERVES.
 - SPINAL NERVES.

NEURONS

- BASIC STRUCTURAL AND FUNCTIONAL UNITS OF THE NERVOUS SYSTEM.
 - CANNOT DIVIDE BY MITOSIS.
- RESPOND TO PHYSICAL AND CHEMICAL STIMULI.
- PRODUCE AND CONDUCT ELECTROCHEMICAL IMPULSES.
- RELEASE CHEMICAL REGULATORS.
- NERVE:
 - BUNDLE OF AXONS LOCATED OUTSIDE CNS.
 - MOST COMPOSED OF BOTH MOTOR AND SENSORY FIBERS.

NEURONS

- CELL BODY (PERIKARYON):
 - "NUTRITION CENTER."
 - CELL BODIES WITHIN CNS CLUSTERED INTO NUCLEI, AND IN PNS IN GANGLIA.
- DENDRITES:
 - PROVIDE RECEPTIVE AREA.
 - TRANSMIT ELECTRICAL IMPULSES TO CELL BODY.
- AXON:
 - CONDUCTS IMPULSES AWAY FROM CELL BODY.
 - AXOPLASMIC FLOW:
 - PROTEINS AND OTHER MOLECULES ARE TRANSPORTED BY RHYTHMIC CONTRACTIONS TO NERVE ENDINGS.
 - AXONAL TRANSPORT:
 - EMPLOYS MICROTUBULES FOR TRANSPORT.
 - MAY OCCUR IN ORTHOGRADE OR RETROGRADE DIRECTION.

NEURONS

FUNCTIONAL CLASSIFICATION OF NEURONS

 BASED UPON DIRECTION IMPULSES CONDUCTED.

1 - SENSORY OR AFFERENT:

 CONDUCT IMPULSES
 FROM SENSORY
 RECEPTORS INTO CNS.

2 - MOTOR OR EFFERENT:

 CONDUCT IMPULSES OUT OF CNS TO EFFECTOR ORGANS.

3 - ASSOCIATION OR

INTERNEURONS:

- LOCATED ENTIRELY WITHIN THE CNS.
- SERVE AN INTEGRATIVE FUNCTION.

STRUCTURAL CLASSIFICATION OF NEURONS

• BASED ON THE PROCESSES THAT EXTEND FROM CELL BODY.

1 - PSEUDOUNIPOLAR:

- SHORT SINGLE PROCESS THAT BRANCHES LIKE A T.
- SENSORY NEURONS.

2 - BIPOLAR NEURONS:

- HAVE 2 PROCESSES.
- RETINA OF THE EYE.

3 - MULTIPOLAR:

- HAVE SEVERAL DENDRITES AND 1 AXON.
- MOTOR NEURON.

PNS SUPPORTING CELLS

1- SCHWAAN CELLS:

- SUCCESSIVE WRAPPING OF THE CELL MEMBRANE.
- OUTER SURFACE ENCASED IN GLYCOPROTEIN BASEMENT MEMBRANE.
- PROVIDE INSULATION.

• NODES OF RANVIER:

• UNMYELINATED AREAS BETWEEN ADJACENT SCHWAAN CELLS THAT PRODUCE NERVE IMPULSES.

2 - SATELLITE CELLS:

• SUPPORT NEURON CELL BODIES WITHIN GANGLIA.

CNS SUPPORTING CELLS

1 - OLIGODENDROCYTES:

- PROCESS OCCURS MOSTLY POSTNATALLY.
- EACH HAS
 EXTENSIONS
 THAT FORM
 MYELIN SHEATHS
 AROUND
 SEVERAL AXONS.
 - INSULATION.

CNS SUPPORTING CELLS

2 - ASTROCYTES:

- MOST ABUNDANT GLIAL CELL.
- VASCULAR PROCESSES
 TERMINATE IN END-FEET
 THAT SURROUND THE
 CAPILLARIES.
- STIMULATE TIGHT JUNCTIONS, CONTRIBUTING TO BLOOD-BRAIN BARRIER.
- REGULATE EXTERNAL ENVIRONMENT OF K+ AND PH.
- TAKE UP K+ FROM ECF, NTS RELEASED FROM AXONS, AND LACTIC ACID (CONVERT FOR ATP PRODUCTION).
 - OTHER EXTENSIONS
 ADJACENT TO SYNAPSES.

CNS SUPPORTING CELLS

3 - MICROGLIA:

• PHAGOCYTES, MIGRATORY.

4 - EPENDYMAL CELLS:

- SECRETE CSF.
- LINE VENTRICLES.
- FUNCTION AS NEURAL STEM CELLS.
- CAN DIVIDE AND PROGENY DIFFERENTIATE.

NERVE REGENERATION

- SCHWANN CELLS:
 - ACT AS PHAGOCYTES, AS THE DISTAL NEURONAL PORTION DEGENERATES.
 - SURROUNDED BY BASEMENT MEMBRANE, FORM REGENERATION TUBE:
 - SERVE AS GUIDE FOR AXON.
 - SEND OUT CHEMICALS THAT ATTRACT THE GROWING AXON.
 - AXON TIP CONNECTED TO CELL BODY BEGINS TO GROW TOWARDS DESTINATION.

NERVE REGENERATION

NERVE REGENERATION

- CNS HAS LIMITED ABILITY TO REGENERATE:
 - ABSENCE OF CONTINUOUS BASEMENT MEMBRANE.
 - OLIGODENDROCYTES MOLECULES INHIBIT NEURONAL GROWTH.

NEUROTROPHINS

- PROMOTE NEURON GROWTH.
- NERVE GROWTH FACTORS INCLUDE:
 - NERVE GROWTH FACTOR (NGF), BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF), GLIAL-DERIVED NEUROTROPHIC FACTOR (GDNF), NEUROTROPHIN-3, AND NEUROTROPHIN-4/5.
- FETUS:
 - EMBRYONIC DEVELOPMENT OF SENSORY NEURONS AND SYMPATHETIC GANGLIA (NGF AND NEUROTROPHIN-3).

NEUROTROPHINS

• ADULT:

- MAINTENANCE OF SYMPATHETIC GANGLIA (NGF).
- MATURE SENSORY NEURONS NEED FOR REGENERATION.
- REQUIRED TO MAINTAIN SPINAL NEURONS (GDNF).
- SUSTAIN NEURONS THAT USE DOPAMINE (GDNF).

BLOOD-BRAIN BARRIER

- CAPILLARIES IN BRAIN DO NOT HAVE PORES BETWEEN ADJACENT ENDOTHELIAL CELLS.
 - JOINED BY TIGHT JUNCTIONS.
- MOLECULES WITHIN BRAIN CAPILLARIES MOVED SELECTIVELY THROUGH ENDOTHELIAL CELLS BY:
 - DIFFUSION.
 - ACTIVE TRANSPORT.
 - ENDOCYTOSIS.
 - EXOCYTOSIS.

ELECTRICAL ACTIVITY OF AXONS

- ALL CELLS MAINTAIN A RESTING MEMBRANE POTENTIAL (RMP):
 - POTENTIAL VOLTAGE DIFFERENCE ACROSS MEMBRANE.
 - LARGELY THE RESULT OF NEGATIVELY CHARGED ORGANIC MOLECULES WITHIN THE CELL.
 - LIMITED DIFFUSION OF POSITIVELY CHARGED INORGANIC IONS.
 - PERMEABILITY OF CELL MEMBRANE:
 - ELECTROCHEMICAL GRADIENTS OF NA+ AND K+.
 - NA+/K+ ATPASE PUMP.
- EXCITABILITY/IRRITABILITY:
 - ABILITY TO PRODUCE AND CONDUCT ELECTRICAL IMPULSES.

ELECTRICAL ACTIVITY OF AXONS

• INCREASE IN MEMBRANE PERMEABILITY FOR SPECIFIC ION CAN BE MEASURED BY PLACING 2 ELECTRODES (1 INSIDE AND 1 OUTSIDE THE CELL).

DEPOLARIZATION:

• POTENTIAL DIFFERENCE REDUCED (BECOME MORE POSITIVE).

REPOLARIZATION:

RETURN TO RESTING
 MEMBRANE POTENTIAL
 (BECOME MORE NEGATIVE).

HYPERPOLARIZATION:

MORE NEGATIVE THAN RMP.

ION GATING IN AXONS

- CHANGES IN MEMBRANE POTENTIAL CAUSED BY ION FLOW THROUGH ION CHANNELS.
- VOLTAGE GATED (VG) CHANNELS OPEN IN RESPONSE TO CHANGE IN MEMBRANE POTENTIAL.
 - GATED CHANNELS ARE PART OF PROTEINS THAT COMPRISE THE CHANNEL.
 - CAN BE OPEN OR CLOSED IN RESPONSE TO CHANGE.
 - 2 TYPES OF CHANNELS FOR K+:
 - 1 ALWAYS OPEN.
 - 1 CLOSED IN RESTING CELL.
 - CHANNEL FOR NA+:
 - ALWAYS CLOSED IN RESTING CELLS.
 - SOME NA+ DOES LEAK INTO THE CELLS.

ION GATING IN AXONS

ACTION POTENTIALS (APS)

- STIMULUS CAUSES DEPOLARIZATION TO THRESHOLD.
- VG NA+ CHANNELS OPEN.
 - ELECTROCHEMICAL GRADIENT INWARD.
 - + FEEDBACK LOOP.
 - RAPID REVERSAL IN MEMBRANE POTENTIAL FROM –70 TO + 30 MV.
 - VG NA+ CHANNELS BECOME INACTIVATED.
- VG K+ CHANNELS OPEN.
 - ELECTROCHEMICAL GRADIENT OUTWARD.
 - FEEDBACK LOOP.
 - RESTORE ORIGINAL RMP.

ACTION POTENTIALS (APS)

MEMBRANE PERMEABILITES

- AP IS
 PRODUCED BY
 AN INCREASE
 IN NA+
 PERMEABILITY.
- AFTER SHORT
 DELAY,
 INCREASE IN K+
 PERMEABILITY.

ACTION POTENTIALS (APS)

- DEPOLARIZATION AND REPOLARIZATION OCCUR VIA DIFFUSION, DO NOT REQUIRE ACTIVE TRANSPORT.
 - ONCE AP COMPLETED, NA+/K+ ATPASE PUMP EXTRUDES NA+, AND RECOVERS K+.
- ALL OR NONE:
 - WHEN THRESHOLD REACHED, MAXIMUM POTENTIAL CHANGE OCCURS.
 - AMPLITUDE DOES NOT NORMALLY BECOME MORE POSITIVE THAN + 30 MV BECAUSE VG NA+ CHANNELS CLOSE QUICKLY AND VG K+ CHANNELS OPEN.
 - DURATION IS THE SAME, ONLY OPEN FOR A FIXED PERIOD OF TIME.
- CODING FOR STIMULUS INTENSITY:
 - INCREASED FREQUENCY OF AP INDICATES GREATER STIMULUS STRENGTH.
- RECRUITMENT:
 - STRONGER STIMULI CAN ACTIVATE MORE AXONS WITH A HIGHER THRESHOLD.

REFRACTORY PERIODS

- ABSOLUTE REFRACTORY PERIOD:
 - AXON MEMBRANE IS INCAPABLE OF PRODUCING ANOTHER AP.
- RELATIVE REFRACTORY PERIOD:
 - VG ION CHANNEL SHAPE ALTERS AT THE MOLECULAR LEVEL.
 - VG K⁺ CHANNELS ARE OPEN.
 - AXON MEMBRANE CAN PRODUCE ANOTHER ACTION POTENTIAL, BUT REQUIRES STRONGER STIMULUS.

