LECTURE 3

NERVOUS SYSTEM
NEURONS AND SYNAPSES

Dr. Abeer Mohammed Hussain Dr. Israa Sekar Salman

CABLE PROPERTIES OF NEURONS

- ABILITY OF NEURON TO TRANSMIT CHARGE THROUGH CYTOPLASM.
- AXON CABLE PROPERTIES ARE POOR:
 - HIGH INTERNAL RESISTANCE.
 - MANY CHARGES LEAK OUT OF THE AXON THROUGH MEMBRANE.
- AN AP DOES NOT TRAVEL DOWN THE ENTIRE AXON.
- EACH AP IS A STIMULUS TO PRODUCE ANOTHER AP IN THE NEXT REGION OF MEMBRANE WITH VG CHANNELS.

CONDUCTION IN AN UNMYELINATED AXON

- CABLE SPREAD OF
 DEPOLARIZATION WITH
 INFLUX OF NA+
 DEPOLARIZES THE
 ADJACENT REGION
 MEMBRANE,
 PROPAGATING THE AP.
- CONDUCTION RATE IS SLOW.
 - AP MUST BE PRODUCED AT EVERY FRACTION OF MICROMETER.
- OCCURS IN 1 DIRECTION;
 PREVIOUS REGION IS IN
 ITS REFRACTORY PERIOD.

CONDUCTION IN MYELINATED AXON

- MYELIN PREVENTS MOVEMENT OF NA+ AND K+ THROUGH THE MEMBRANE.
- INTERRUPTION IN MYELIN (NODES OF RANVIER) CONTAIN VG NA+ AND K+ CHANNELS.
- AP OCCURS ONLY AT THE NODES.
 - APAT 1 NODE DEPOLARIZES MEMBRANE TO REACH THRESHOLD AT NEXT NODE.
- SALTATORY CONDUCTION (LEAPS).
 - FAST RATE OF CONDUCTION.

SYNAPSE

- FUNCTIONAL CONNECTION BETWEEN A NEURON AND ANOTHER NEURON OR EFFECTOR CELL.
- TRANSMISSION IN ONE DIRECTION ONLY.
- AXON OF FIRST (PRESYNAPTIC) TO SECOND (POSTSYNAPTIC) NEURON.
- SYNAPTIC TRANSMISSION IS THROUGH A CHEMICAL GATED CHANNEL.
- PRESYNAPTIC TERMINAL (BOUTON)
 RELEASES A NEUROTRANSMITTER (NT).

ELECTRICAL SYNAPSE

• IMPULSES CAN BE REGENERATED WITHOUT INTERRUPTION IN ADJACENT CELLS.

• GAP JUNCTIONS:

- ADJACENT CELLS ELECTRICALLY COUPLED THROUGH A CHANNEL.
- EACH GAP JUNCTION IS COMPOSED OF 12 CONNEXIN PROTEINS.

• EXAMPLES:

• SMOOTH AND CARDIAC MUSCLES, BRAIN, AND GLIAL CELLS.

CHEMICAL SYNAPSE

- TERMINAL BOUTON IS SEPARATED FROM POSTSYNAPTIC CELL BY SYNAPTIC CLEFT.
- NTS ARE RELEASED FROM SYNAPTIC VESICLES.
- VESICLES FUSE WITH AXON MEMBRANE AND NT RELEASED BY EXOCYTOSIS.
- AMOUNT OF NTS
 RELEASED DEPENDS
 UPON FREQUENCY OF
 AP.

SYNAPTIC TRANSMISSION

- 1 NT RELEASE IS RAPID BECAUSE MANY VESICLES FORM FUSION-COMPLEXES AT "DOCKING SITE."
- 2 AP TRAVELS DOWN AXON TO BOUTON.
- 3 VG CA²⁺ CHANNELS OPEN.
 - CA²⁺ ENTERS BOUTON DOWN CONCENTRATION GRADIENT.
 - INWARD DIFFUSION TRIGGERS RAPID FUSION OF SYNAPTIC VESICLES AND RELEASE OF NTS.
- 4 CA²⁺ ACTIVATES CALMODULIN, WHICH ACTIVATES PROTEIN KINASE.
- 5 PROTEIN KINASE PHOSPHORYLATES SYNAPSINS.
 - SYNAPSINS AID IN THE FUSION OF SYNAPTIC VESICLES.

SYNAPTIC TRANSMISSION

- 6 NTS ARE RELEASED AND DIFFUSE ACROSS SYNAPTIC CLEFT.
- 7 NT (LIGAND) BINDS TO SPECIFIC RECEPTOR PROTEINS IN POSTSYNAPTIC CELL MEMBRANE.
- 8 CHEMICALLY-REGULATED GATED ION CHANNELS OPEN.
 - EPSP: DEPOLARIZATION.
 - IPSP: HYPERPOLARIZATION.
- 9 NEUROTRANSMITTER INACTIVATED TO END TRANSMISSION.

CHEMICAL SYNAPSES

- EPSP
 (EXCITATORY
 POSTSYNAPTIC
 POTENTIAL):
 - DEPOLARIZATI ON.
- IPSP
 (INHIBITORY
 POSTSYNAPTIC
 POTENTIAL):
 - HYPERPOLARI ZATION

1 - ACETYLCHOLINE (ACH) AS NT

- ACH IS BOTH AN EXCITATORY AND INHIBITORY NT, DEPENDING ON ORGAN INVOLVED.
 - CAUSES THE OPENING OF CHEMICAL GATED ION CHANNELS.
- NICOTINIC ACH RECEPTORS:
 - FOUND IN AUTONOMIC GANGLIA AND SKELETAL MUSCLE FIBERS.
- MUSCARINIC ACH RECEPTORS:
 - FOUND IN THE PLASMA MEMBRANE OF SMOOTH AND CARDIAC MUSCLE CELLS, AND IN CELLS OF PARTICULAR GLANDS.

LIGAND-OPERATED ACH CHANNELS

- MOST DIRECT MECHANISM.
- ION CHANNEL RUNS THROUGH RECEPTOR.
 - RECEPTOR HAS 5 POLYPEPTIDE SUBUNITS THAT ENCLOSE ION CHANNEL.
 - 2 SUBUNITS CONTAIN ACH BINDING SITES.
- CHANNEL OPENS WHEN BOTH SITES BIND TO ACH.
 - PERMITS DIFFUSION OF NA+ INTO AND K+ OUT OF POSTSYNAPTIC CELL.
- INWARD FLOW OF NA+ DOMINATES.
 - PRODUCES EPSPS.

G PROTEIN-OPERATED ACH CHANNEL

- ONLY 1 SUBUNIT.
- ION CHANNELS ARE SEPARATE PROTEINS LOCATED AWAY FROM THE RECEPTORS.
- BINDING OF ACH ACTIVATES ALPHA G-PROTEIN SUBUNIT.
- ALPHA SUBUNIT DISSOCIATES.
- ALPHA SUBUNIT OR THE BETA-GAMMA COMPLEX DIFFUSES THROUGH MEMBRANE UNTIL IT BINDS TO ION CHANNEL, OPENING IT.

ACETYLCHOLINESTERASE (ACHE)

- ENZYME THAT INACTIVATES ACH.
 - PRESENT ON POSTSYNAPTIC MEMBRANE OR IMMEDIATELY OUTSIDE THE MEMBRANE.
- PREVENTS CONTINUED STIMULATION.

ACH IN CNS

- CHOLINERGIC NEURONS:
 - USE ACH AS NT.
 - AXON BOUTON SYNAPSES WITH DENDRITES OR CELL BODY OF ANOTHER NEURON.
- FIRST VG CHANNELS ARE LOCATED AT AXON HILLOCK.
- EPSPS SPREAD BY CABLE PROPERTIES TO INITIAL SEGMENT OF AXON.
- GRADATIONS IN STRENGTH OF EPSPS ABOVE THRESHOLD DETERMINE FREQUENCY OF APS PRODUCED AT AXON HILLOCK.

ACH IN PNS

- SOMATIC MOTOR NEURONS SYNAPSE WITH SKELETAL MUSCLE FIBERS.
 - RELEASE ACH FROM BOUTONS.
 - PRODUCES END-PLATE POTENTIAL (EPPS).
- DEPOLARIZATION OPENS VG CHANNELS
 ADJACENT TO END PLATE.

EPPS

IT'S VOLTAGE WHICH CAUSE **DEPOLARIZATION** SKELETAL MUSCLE CAUSED NEUROTRANSMITTERS BINDING TO POSTSYNAPTIC **MEMBRANE NEUROMUSCULAR** JUNCTION.

2 - MONOAMINES AS NT

- MONOAMINE NTS:
 - EPINEPHRINE.
 - NOREPINEPHRINE.
 - SEROTONIN.
 - · DOPAMINE.
- RELEASED BY EXOCYTOSIS FROM PRESYNAPTIC VESICLES.
- DIFFUSE ACROSS THE SYNAPTIC CLEFT.
- INTERACT WITH SPECIFIC RECEPTORS IN POSTSYNAPTIC MEMBRANE.

INHIBITION OF MONOAMINES AS NT

- REUPTAKE OF MONOAMINES INTO PRESYNAPTIC MEMBRANE.
 - ENZYMATIC
 DEGRADATION OF
 MONOAMINES IN
 PRESYNAPTIC
 MEMBRANE BY MAO.
- ENZYMATIC
 DEGRADATION OF
 CATECHOLAMINES IN
 POSTSYNAPTIC
 MEMBRANE BY COMT.

MECHANISM OF ACTION

- MONOAMINE NT DO NOT DIRECTLY OPEN ION CHANNELS.
- ACT THROUGH SECOND MESSENGER, SUCH AS CAMP.
- BINDING OF NOREPINEPHRINE STIMULATES DISSOCIATION OF G-PROTEIN ALPHA SUBUNIT.
- ALPHA SUBUNIT BINDS TO ADENYLATE CYCLASE, CONVERTING ATP TO CAMP.
- CAMP ACTIVATES PROTEIN KINASE, PHOSPHORYLATING OTHER PROTEINS.
- OPEN ION CHANNELS.

A - SEROTONIN AS NT

- NT (DERIVED FROM L-TRYPTOPHAN) FOR NEURONS WITH CELL BODIES IN RAPHE NUCLEI.
- REGULATION OF MOOD, BEHAVIOR, APPETITE, AND CEREBRAL CIRCULATION.
- SSRIS (SEROTONIN-SPECIFIC REUPTAKE INHIBITORS):
 - INHIBIT REUPTAKE AND DESTRUCTION OF SEROTONIN, PROLONGING THE ACTION OF NT.
 - USED AS AN ANTIDEPRESSANT.
 - REDUCES APPETITE, TREATMENT FOR ANXIETY, TREATMENT FOR MIGRAINE HEADACHES.

B - DOPAMINE AN NT

- NT FOR NEURONS WITH CELL BODIES IN MIDBRAIN.
- AXONS PROJECT INTO:
 - NIGROSTRIATAL DOPAMINE SYSTEM:
 - NUERONS IN SUBSTANTIA NIGRA SEND FIBERS TO CORPUS STRAITUM.
 - INITIATION OF SKELETAL MUSCLE MOVEMENT.
 - PARKINSON'S DISEASE: DEGENERATION OF NEURONS IN SUBSTANTIA NIGRA.
 - MESOLIMBIC DOPAMINE SYSTEM:
 - NEURONS ORIGINATE IN MIDBRAIN, SEND AXONS TO LIMBIC SYSTEM.
 - INVOLVED IN BEHAVIOR AND REWARD.
 - ADDICTIVE DRUGS:
 - PROMOTE ACTIVITY IN NUCLEUS ACCUMBENS.

C - NOREPINEPHRINE (NE) AS NT

• NT IN BOTH PNS AND CNS.

• PNS:

- SMOOTH MUSCLES, CARDIAC MUSCLE AND GLANDS.
 - INCREASE IN BLOOD PRESSURE, CONSTRICTION OF ARTERIES.

• CNS:

• GENERAL BEHAVIOR.

3 - AMINO ACIDS AS NT

- GLUTAMIC ACID AND ASPARTIC ACID:
 - MAJOR EXCITATORY NTS IN CNS.
- GLUTAMIC ACID:
 - NMDA RECEPTOR INVOLVED IN MEMORY STORAGE.
- GLYCINE:
 - INHIBITORY, PRODUCES IPSPS.
 - OPENING OF CL- CHANNELS IN POSTSYNAPTIC MEMBRANE.
 - HYPERPOLARIZATION.
 - HELPS CONTROL SKELETAL MOVEMENTS.
- GABA (GAMMA-AMINOBUTYRIC ACID):
 - MOST PREVALENT NT IN BRAIN.
 - INHIBITORY, PRODUCES IPSPS.
 - HYPERPOLARIZES POSTSYNAPTIC MEMBRANE.
 - MOTOR FUNCTIONS IN CEREBELLUM.

4 - POLYPEPTIDES AS NT

- CCK:
 - PROMOTE SATIETY FOLLOWING MEALS.
- SUBSTANCE P:
 - MAJOR NT IN SENSATIONS OF PAIN.
- SYNAPTIC PLASTICITY (NEUROMODULATING EFFECTS):
 - NEURONS CAN RELEASE CLASSICAL NT OR THE POLYPEPTIDE NT.