zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4:bs 4sa i 18

Constructor

A constructor is a ‘special” member function whose task is to initialize the objects of
its class. It is special because its name is the same as the class name. A constructor is
a function that is executed automatically whenever an object of its associated class is
created. It is called constructor because it constructs the values of data members of
the class.

Example 1:

class point
{intm,n;
public:
point () // constructor

},

main ()
{

point X1 ; /lnot only creates the object X1 of type point but also initializes it data members m and n to zero

}

When a class contains a constructor like the one defined above, it is
guaranteed that an object created by the class will be initialized automatically.

This is useful because the programmer may forget to initialize the object after
creating it. It’s more reliable and convenient, especially when there are a great many
objects of a given class, to cause each object to initialize itself when it’s created. The
constructor does this.

Types of Constructor:
A constructor with no parameters is called (Default Constructor) and
a constructor that can take arguments is called (Parameterized Constructor).

The constructor functions have some special characteristics:
1- They should be declared in public section.
2- They are executed automatically when the objects are created.

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsa i 19

3- They do not have return types, not even void and therefore, they cannot return
values.

Parameterized Constructors
C++ permits to pass argument to the constructor function when the objects are
created.

Example 2 : Rectangle Class with constructor
include < iostream.h >

class Rectangle

{ int length , width ;

public:
Rectangle (inta,intb) // constructor
{ length=a ;
Width=b ; }
intarea ()
{ return length * width ; }
};
main ()

{ Rectangle R (10,4) ; // implicit call
cout<<R.area();

}

The initial values passed as arguments to the constructor function when an object
is declared this can be done in two ways (types of constructor calling):
1- By calling the constructor explicitly.
2- By calling the constructor implicitly.

The following declaration illustrates the first method:
Rectangle R1 = Rectangle (9, 2) ; //explicit call
This statement creates a Rectangle object R1 and passes the values 9 and 2 to it.

The second method is implemented as follows:
Rectangle R1 (9, 2) ; // implicit call

This method, sometimes called the shorthand method, is used very often as it is
shorter, looks better and is easy to implement.

Multiple Constructors in a Class
Example 3:
include < iostream.h >

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4:tsh 4xa i 20

class AB
{ private: intx,vy;
public:
AB()
{1}
AB (intz,intr)
{ x=z;
y=r;}
}i
main ()
{ AB m; /Icall constructorl
AB n(9,2); /lcall constructor2

}

When more than one constructor function is defined in class the process is called
constructor overloading, as in the following example. Generally, the process of
defining more than one function having the same name is called function
overloading.

In the above example there is the empty constructor which is do nothing
constructor (defined to satisfied (—=_2) the compiler), since there is the
parameterized constructor, the empty constructor must be defined otherwise the
compiler will show error message.

Example 4: shows multiple constructors and scope resolution operator.
include < iostream.h>
class Rectangle
{ public: int length , width ;
Rectangle ()
{length=0;
width=0; }
Rectangle (intx, inty)
{ length=x;
width=vy; }
intarea () ;
void show () ;
s
int Rectangle :: area ()
{ return length * width ;}

void Rectangle :: show ()
{ cout << length ;

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsadll 21

cout << width ; }

main ()
{ Rectangle R1,R2(20,8);
R1.length=35;
R1.width = 12 ;
R1.show ();
R2 . show () ;

cout<<"area of RL="<<Rl.area();
cout << "area of R2="<<R2.area();

}

H.W : Write a program that uses the above program but all data are private.

Destructor
A destructor is used to destroy the objects that have been created by a constructor.

The destructor is a member function whose name is the same as the class name but
it preceded by a tilde (~) symbol.
For example the destructor for the class Rectangle can be defined as:
~ Rectangle ()
{ 1}
The destructor never takes any argument nor does it return any value.
1t will be called implicitly by the compiler upon exit from the program to clean up
the storage that is no longer accessible.
Unlike constructors, a class may have at most one destructor.

Example 1:
include < iostream.h >
class ABC
{ public:intx,y;
public : ABC ()
{x=2;
y=7;

~ABC ()
{1}
}i

main ()

glad @Ay .2 Balal) (uta das)

{ABCm;
cout<< m.x<<endl;
cout<< m.y<<endl;

}

Output : 2
7

Object-Oriented Programming 4sbs dsa i 22

Example 2 : Employee class whose member data (name , age , salary , dept). Its
member functions (input and show). Using constructor and destructor.

include < iostream.h>
const int size = 30

class employee

{ public: char name [size] ;
int age, salary ;
char dept [size] ;

employee ()
{ 1}

~employee ()

{ 1

void input ()

{ cin >>name ;
cin >>age ;
cin >> salary ;
cin >> dept ;

}

void show ()

{ cout << name << endl ;
cout << age <<endl ;
cout << salary << endl ;
cout << dept << endl ;

}
}i

main ()
{ employee emp ;
emp . input () ;

