

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

36

Friend Function
The private member cannot be accessed from the functions that are not member to

the class. However, there could be a situation where two classes need to share a

particular function.

In such situations C++ allows the common function to be made friendly with both

the classes thereby allowing the function to have access to the private data of

these classes.

Such a function need not be a member of any of these classes.

To make an outside function “friend” to a class it will be declared as in the

following example:

Example 1:

 class ABC

 { public:

 friend void xyz () ; //declaration or prototype

 }

The function declaration should be preceded by the keyword friend.

The function definition does not use either the keyword friend or the scope

operator (::).

A friend function has certain special characteristics:

 • It is not in the scope of the class to which it has been declared as friend.

 • Since it is not in the scope of the class, it cannot be called using the object of

that class it can be invoked like a normal function without the help of any

object.

 • Unlike member functions, it cannot access the member names directly and has

to use an object name and dot membership operator with each member name.

 • It can be declared either in the public or the private part of a class without

affecting its meaning.

 • Usually, it has the objects as arguments.

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

37

Example 2:

class sample

{ private: int x , y ;

 public:

 void set (int a , int b) { x = a ; y = b ; }

 friend float mean (sample) ;

} ;

float mean (sample s) // note that there is no (::) operator

{ return (s.x + s.y) / 2.0 ; } // it uses s.x instead of x

 main ()

{ sample a ;

 a . set (20 , 45) ;

 cout << ”mean value = ” << mean (a) << endl ;

 }

Member functions of one class can be friend functions of another class. In such

cases, they are defined using the scope resolution operator as shown below:

Example 3:

 class X

{ ….

 …..

 int fun1 () ; //member function of X

 } ;

 class Y

 { …….

 ……

 friend int X :: fun1() ; //The function fun1() is a member of class X and a friend of Y

 ……

 } ;

We can also declare all the member function of one class as the friend functions of

another class. In such case, the class is called a friend class.

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

38

Polymorphism
Polymorphism is one of the crucial features of OOP. It simply means "one name,

multiple forms".

Function Overloading
Several different functions can be given the same name. Function overloading is one

of the most powerful features of C++ programming language. It forms the basis of

polymorphism (compile-time polymorphism).

The overloaded member functions are selected for invoking by matching arguments,

both type and number. This information is known to the compiler at the compile

time and, therefore, compiler is able to select the appropriate function for a particular

call at the compile time itself. This is called early binding or static binding or static

linking. Also known as compile time polymorphism, early binding simply means

that an object is bound to its function call at compile time.

Function Overloading: is the process of using two or more functions with the same

name but differing in the signature (the number or type of arguments or both).

Compile-time

Polymorphism

Run-time

Polymorphism

Virtual

Function

Polymorphism

Function

Overloading

Operator

Overloading

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

39

To avoid ambiguity, each definition of an overloaded function must have a unique

signature.

All of you know that we cannot have two variables of the same name, but can we

have two Functions having the same name. Such functions essentially have

different argument list. The difference can be in terms of number or type of

arguments or both.

Notice that a function cannot be overloaded only by its return type. At least one of

its parameters must have a different type.

In overloaded functions, the function call determines which function definition

will be executed.

The Advantages of Overloading are:
● It helps us to perform same operations on different data-types without having the

need to use separate names for each version.

● The use of overloading may not have reduced the code complexity /size but has

definitely made it easier to understand and avoided the necessity of remembering

different names for each version function which perform identically the same task.

Example1: We have two functions with the same name: calc

 We have different signatures: (int) , (int , int)

 Overloading Functions differ in terms of number of parameters

#include <iostream.h>

class arith

{ public:

 void calc (int num1)

 { cout << " Square of a given number: " << num1 * num1 << endl ; }

 void calc (int num1, int num2)

 { cout << " Product of two numbers: " << num1 * num2 << endl ; }

} ;

main ()

{ arith a;

 a . calc (5) ; // Based on the arguments we use when we call the calc function, the

 a . calc (6 , 7) ; // compiler decides witch function to use at the moment we call the function

}

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

40

Example 2: Overloading Functions differ in terms of type of parameters

include <iostream.h>

 int func (int i) ;

 double func (double i) ;

 main ()

 { cout << func (10) ; // func(int i) is called

 cout << func (10.24) ; // func (double i) is called

 }

 int func (int i)

 { return i + 5 ; }

 double func (double i)

 { return i * 8 ; }

Example 3: Is the program below, valid ?

 #include<iostream.h>

 int func (int i)

 { return i ; }

 double func (int i)

 {

 return i;

 }

 void main ()

 { cout << func(10) ;

 cout << func(10.201) ;

 }

No, because you can’t overload functions if they differ only in terms of the data type

they return.

H.W. Write a program to use three functions (sum) to find the summation of two

numbers.

Operator Overloading
C++ tries to make user-defined data types behave in much the same way as the built-

in types. For instance, C++ permits to add two variables of user defined types with

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

41

the same syntax that is applied to the basic types. This means that C++ has the

ability to provide the operators with special meaning for a data type. The mechanism

of giving such special meaning to an operator is known as “operator overloading”.

All C++ operators can be overloaded (given additional meaning) except the

following:

- class member access operator (.)

- scope resolsution operator (::).

- size operator (sizeof)

- conditional operator (? :)

When an operator is overloaded, its original meaning is not lost. For instance, the

operator +, which has been overloaded to add two vectors, can still be used to add

two integers.

Although the semantic of an operator can be extended, we cannot change its

syntax, the grammatical rules that govern its use such as the number of operands,

precedence and associatively. For example: the multiplication operator is higher

precedence than the addition operator.

Defining Operator Overloading:

 The general form of an operator function is

Operator is reserved word and (op) is the operator being overloaded, operator op is

the function name.

Note that operator functions can be either member function or friend function.

A basic difference between them is that a friend function take two argument for

binary operators and one for unary operator while the member function take one

argument for binary operator and no argument for unary operator.

Return type classname :: operator op (arguments-list)

{

 Function body

}

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

42

This is because the object used to invoke the member function is passed

implicitly and therefore is available for the member function. This is not the case

with the friend function.

The process of overloading involves the following steps:

1- First, create a class that defines the data type that is to be used in the overloading

operation.

2- Declare the operator function operator op() in the public part of the class. It may

be either a member function or a friend function.

3- Define the operator function to implement the required operations.

Overloading Unary Operators

Example: A minus operator, when used as a unary, takes just one operand

void space :: operator - ()

{ x = - x ;

 y = - y ;

 z = - z ;

}

void space :: getdata (int a , int b , int c)

{ x = a ;

 y = b ;

 z = c ; }

void space :: display ()

{

 cout << x << " " << y << " " << z << "\n" ; }

main ()

{ space s ;

 s . getdata (10 , -20 , 30) ;

 cout << " s : " ;

 s . display () ;

 s . operator - () ; // or -s ;

 cout << " s : " ;

 s . display () ;

}

Note that statement like: s2 = - s1 ;

Will not work because the function operator – () does not return any value. It can

work if the function is modified to return object.

Overloading Unary Operators using Friends

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

43

To overload a unary minus operator using a friend function as follow:

 void operator - (space & ss)

 { ss . x = - ss . x ;

 ss . y = - ss . y ;

 ss . z = - ss . z ;

 }

Overloading Binary Operators:

The following example explain how to perform overloading for + operator

class complex

{ float x ;

 float y ;

 public:

 complex ()

 { }

 complex (float real , float image)

 { x = real ;

 y = image ; }

 complex operator + (complex C) ;

 void display()

 { cout << x << " , " << y << "\n" ; }

 } ;

complex complex :: operator + (complex C)

{ complex temp;

 temp . x = x + C . x ;

 temp . y = y + C . y ;

 return temp ;

}

main ()

{ complex c1 , c2 , c3 ;

 c1 = complex (2.5 , 3.5) ;

 c2 = complex (1.6 , 2.7) ;

 c3 = c1 + c2 ; // or c =c1.operator + (c2) ;

 cout << "c1= " ; c1 . display () ;

 cout << "c2 = " ; c2 . display () ;

 cout << "c3 = " ; c3 . display () ;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

44

}

Overloading Binary Operators using Friends
The complex number program discussed in the previous section can be modified

using a friend operator function as follows:

 1- Replace the member function declaration by the friend function declaration

friend complex operator + (complex , complex)

 2- Redefine operator functions as follows:

 complex operator + (complex a , complex b)

 { complex temp ;

 temp . x = a . x + b . x ;

 temp . y = b . y + b . y ;

 return temp ;

 }

In this case the statement

 c3 = c1 + c2 ;

Is equivalent to

 c3 = operator + (c1 , c2) ;

Note that the friend and member functions give the same result. Why then these

alternatives? Consider a situation where one operand of binary operator is object and

the second is built in data type as shown below:

 A = B + 2 ; (or A = B * 2)

This will work in member function and A , B object of the same class.

But the statement:

 A = 2 + B ; (or A = 2 * B)

Will not work, this is because the left hand operand which is responsible for

invoking the member function should be object of the same class. Friend function

solves this problem.

Pointers to Objects
Just as you can have pointers to other types of variables, you can have pointers to

objects.

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

45

Sometimes, we don't know, at the time we write the program, how many objects we

want to create. When this is the case we can use new to create objects while the

program is running.

Object pointers are useful in creating objects at run time. We can also use the object

pointer to access the public members of an object.

Item x;

Item* ptr;

Item *ptr=&x;

Ptr->show () ; it is equivalent to (*ptr)->show();

We also can create the objects using pointers and new operator as follows:

 Item*ptr=new Item;

 ptr->show () ;

 Item*ptr = new Item[10] ;

 ptr [0] -> show () ;

When accessing members of a class given a pointer to an object, use the arrow (–>)

operator instead of the dot operator.

The next program illustrates how to access an object given a pointer to it:

Example 1:

class distance

{ private: int feet ;

 float inches ;

 public: void getdist ()

 { cin >> feet ;

 cin >> inches ; }

 void showdist ()

 { cout << feet << "\n" << inches ; }

} ;

main ()

{ distance dist ;

 distance * distptr ; // pointer to distance

 dist . getdist () ;

 dist . showdist () ;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

46

 distptr = new distance ; // points to new distance object

 distptr -> getdist () ; // access object members with -> operator

}

Note: that we can not refer to the member functions in the object pointed by distptr

using the dot (.) membership-access operator, as in

 distptr . getdist () ; // will not work, distptr is not a variable

The dot operator requires the identifier on its left to be a variable. Since distptr is a

pointer to a variable, we need another syntax.

One approach of dereference (get the contents of the variable pointed by) the

pointer:

 (*distptr) . getdist () ; // ok but it is inelegant

The parentheses are necessary because the dot (.) has higher the indirection operator

(*). An equivalent but more concise approach is by using the membership-access

operator ->.

 distptr -> getdist () ; // better approach

Example 2:

An Array of pointer to object

include <iostream.h>

class item

{ int code ; float price ;

 public:

 void getdata (int a , float b)

 { code = a ; price = b ; }

 void show ()

 { cout << code << endl ;

 cout << price << endl ; }

} ;

const int size = 2 ;

main ()

{ item *p = new item [size] ;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

47

 item *d = p ; // another pointer to first location in item in order not to loss the address of location

 int x , i ;

 float y ;

 for (i = 0 ; i < size ; i ++)

 { cout << "input code and price for item" << i+1 ;

 cin >> x >> y ;

 p -> getdata (x , y) ;

 p ++ ;

 }

 for (i = 0 ; i < size ; i ++)

 { cout << "item: " << i+1 << endl ;

 d -> show () ;

 d ++ ;

 }

}

Pointers to Derived Class
It is means that a single pointer variable can be made to point to objects belonging to

different classes, for example, if B is a base class to the derived class D then

declaring a pointer pointing to the base class can also be used to point to the derived

D.

B *ptr ;

B b ;

D d ;

ptr = &b ;

ptr = &d ; // This is perfectly valid because d is an object derived from the class B

Example 3:

include <iostream.h>

class B

{ public : void display ()

 { cout << " hello B " << endl ; }

} ;

class D : public B

{ public :

 void display()

