

Non-structured programming

Non-structured programming is the historically earliest programming paradigm. It
has been followed historically by procedural programming and then object-oriented
programming, both of them considered as structured programming.

Unstructured programming has been heavily criticized (28l Cux ja%) for producing
hardly-readable ("spaghetti") code and is sometimes considered a bad approach for
creating major projects, but had been praised(z><) for the freedom it offers to
programmers.

There are both high and low level programming languages that use non-structured
programming. These include early versions of BASIC (such as MSX BASIC and
GW-BASIC), COBOL, and machine-level code.

A program in a non-structured language usually consists of sequentially ordered
commands, or statements, usually one in each line. The lines are usually numbered
or may have labels: this allows the flow of execution to jump to any line in the
program.

Non-structured programming introduces basic control flow concepts such as loops,
branches and jumps. Although there is no concept of procedures in the non-
structured paradigm, subroutines are allowed. Unlike a procedure, a subroutine may
have several entry and exit points, and a direct jump into or out of subroutine is
(theoretically) allowed.

Procedural programming

It derived from structured programming, based upon the concept of the procedure
call. Procedures, also known as routines, subroutines, methods, or functions simply
contain a series of computational steps to be carried out. Any given procedure might
be called at any point during a program's execution, including by other procedures or

itself. Some good examples of procedural programs are the Linux kernel, and
Apache HTTP Server.

Inputs are usually specified syntactically in the form of arguments and the outputs
delivered as return values.

Scoping is another technique that helps keep procedures strongly modular. It
prevents the procedure from accessing the variables of other procedures (and vice-
versa), including previous instances of itself, without explicit authorization.

The focus of procedural programming is to break down a programming task into a
collection of variables, data structures, and subroutines.

Modular programming

Is a software design technique that increases the extent to which software is
composed of separate, interchangeable components, called modules by breaking
down program functions into modules, each of which accomplishes one function and
contains everything necessary to accomplish this.

Languages that formally support the module concept include Ada, BlitzMax,
Fortran, MATLAB, Python, and Ruby. Modular programming can be performed
even where the programming language lacks explicit syntactic features to support
named modules.

Theoretically, a modularized software project will be more easily assembled by large
teams, since no team members are creating the whole system, or even need to know
about the system as a whole.

Each module can have its own data. This allows each module to manage an internal
state which is modeled by calls to procedures of this module.

Object- Oriented programming

In this technique, we have a web of interacting objects, each house keeping its own
state.

COrbjoct 1 :
EE= | COhject 2 |
I »aie e
f \ I»ata |
‘Z Chject 3

CObject Diata
i B-ITR Y

Objects of the program interact by sending messages to each other. OOP treats
data as a critical element in the program development and does not allow it to flow
freely around the system.

10

OOP allow us to decompose a problem into a number of entities called object
and then builds data and functions around these entities.

The data of an object can be accessed only by the functions associated with
that object. However, functions of one object can access the functions of other
objects.

Some of features of OOP are:

» Emphasis is on data rather than procedure.

» Data is hidden and cannot be accessed by external functions.

* Programs are divided into what are known as objects.

* Objects may communicate with each other through functions.

* New data and functions can be easily added whenever necessary.

OOQP can be defined as "OOP is an approach that provides a way to modularization
programs by creating partitioned memory area for both data and functions that can
be used as templates for creating copies of such modules on demand".

Since the memory partitions are independent, the objects can be used in a
variety of different programs without modifications.

Basic Concepts of Object-Oriented Programming:

1- Objects. 2- Classes. 3- Data abstraction.
4- Data Encapsulation. 5- Inheritance. 6- Polymorphism.
Objects:

Objects are the basic run-time entities in an OO System. They may represent a
person, place, a bank account, a table of data or any item that the program must
handle.

- Each object contains data and code to manipulate the data.
- When a program is executed, the objects interact by sending messages.

Classes:

The entire set of data and code of an object can be made a user define data
type that called a class.

Objects are variables of type class. Once a class has been defined, we can
create any number of objects belonging to that class. Classes are user defined data
types and behave like the built-in types of programming language.

11

If a fruit has been defined as a class then the statement
fruit mango ;

will create an object (mango) belonging to the class (fruit).

Specifying a Class:
Defining class means creating a new abstract data type that can be treated like any
other built in data type;

class specification has two parts:
1- Class declaration.
2- Class function definition.

The general form of a class declaration is:

class class-name

{

private: variable declaration;
Function declaration;

public: variable declaration;
Function declaration;

)

Classes and Objects

Class: is a way to bind the data and its associated functions together, it allows
the data and functions to be hidden if necessary from external use when defining a
class it means creating a new abstracted data type.

Note that the key feature of OOP is data hiding using private declaration.

- The binding of data and functions together into a single class-type variable is
referred to as encapsulation.

- Usually the data members are declared as private and the member functions as
public.

Creating Objects:

12

Class variables are called objects; for example:

item X ; //memory for X is created
To create more than one object use

item X ,y , Z ;

Accessing Class Members:
The private data cannot be used by main function they are accessed only through
class functions.

A public member is accessible from anywhere within a program. It represents the
interface to the outside world.

A private member can be accessed only by the member functions. A class that
enforces information hiding declares its data members as private. The word
private can be omitted.

We should try to limit or eliminate the use of public variables. Instead, we should
make all data private and control access to it through public functions.

Another class section is called protected. A member declared as protected is

accessible by the member functions within its class and any class immediately
derived from it. It cannot be accessible by the functions outside these two classes.

The three concepts of OOP languages are:

1. Encapsulation: It is the mechanism that binds together code and data it
manipulates and keeps both safe from outside interference and misuse.

With encapsulation, we can accomplish data hiding in which an object can be
used without knowing or caring how it works internally.

C++ supports the properties of encapsulation and data hiding through the
creating of classes.

2. Inheritance: it is a relationship among classes that allows one object to take on
properties of another. Typically, OOP uses inheritance to construct new class
from an existing class; the new class can be described as “a type of” the existing
class.

13

The concept of inheritance provides the idea of reusability. This means that we
can add additional features to an existing class without modifying it. The new
class will have the combined features of both the classes.

For example:

The class of a rectangle contains data members: (length and width). A new class
Square will have similar data members with the special case (length = width).
We also need a member function to calculate the area of a square. Instead of
defining the class (square) from scratch, we can think of square as a special case
of a rectangle. However, we can use the class of a rectangle by inheriting its
behavior and redefining the area function to work for the class of (square).

3. Polymorphism: It is the quality that allows one name to be used for two or more
related but technically different purpose. Such as redefining member functions to
define a new behavior with different number and/or parameters. It simply means
"one name, multiple forms".

Examplel:
class item

{ int number;
float cost;

public:
void getdata (inta , float b)
{ number=a ; cost=b ; }
void putdata ()
{ cout << number << "\n" << cost ; }

%
item x ; // X is an object

To access the above functions from main function use:
Object-name . function-name (actual-arguments);

To access a member of a class use:
Object-name . member

The dot (.) operator is also called (class member access operator).

Therefore function call statement will be
X . getdata (6,75.5);

While the following statement
x . number =100 ; //is illegal

14

Since number declared as private in the class therefore it could be accessed only
through a member function and not by the object directly.

The objects communicate by sending and receiving messages. This is achieved
through the member function, for example:

X.putdata() ; // Send message to the object x to display its data.

While the variables which are defined in public section of class could be accessed by
the object directly.

Example 2:
include < iostream.h >

class xyz
{ int Xx; int y ;

public: int z;
)

main()
{ xyz p;

p.x=0; // error X is private

p.z=10; // ok, z is pubic
}

Function Definition:
1- Inside Class.
2- Outside Class.

Inside Class:

Example 3: Class of Rectangle
include < iostream.h >
class Rectangle
{ public: int length , width ;
int area ()
{ return length * width ; }

}s

15

main ()

{ Rectangle R ;
R.length =8 ;
R.width= 5;

cout << R.area() ; }

H.W. Write a program with a rectangle class whose its length and width are private
(note: that you should write an additional function to enter length and width).

Outside Class:

The general form is:
Return type Class-name :: function-name(argument declaration)

{
Function body

}

Note: the operator (::) can be referred to as Scope Resolution Operator.

Example 4: Write a program to use a model of employee class (its data are: name,
age, and department. Its functions are input() and display().
We can write the function definitions outside the class.

include < itostream.h >

class employee
{ private:

char name [30] ;

int age ;

char dept [10] ;

public: void input () ;
void display () ;

3

void employee :: input ()
{ cin >> name ;

cin >> age ;

cin >>dept ; }

void employee :: display ()
{ cout << name << endl << age <<endl << dept ; }

16

main ()

{ employee E ;
E.input();
E . display () ;

}

Note: if more than one object be created from the same class the process is called
multiple objects.
Example:
employee A, B ;

Example S:

include < iostream.h >
class employee
{ private: char name [30];
int age ;
float salary ;
public:

void getdata ()
{ cin >> name ;
cin >> age ;
cin >> salary ; }

void putdata ()
{ cout << name << endl ;
cout << age << endl ;
cout << salary << endl ; }

)

void main ()
{ employee doctor , nurse , worker ;

doctor . getdata () ;
nurse . getdata () ;
worker . getdata () ;

doctor . putdata () ;
nurse . putdata () ;
worker . putdata (); }

17

Example 6:
include < iostream.h >

class set
{ private: inta, b ;
void input ()
{ cin >> a;
cin>>b;)
void outp ()
{ cout <<a<<endl;
cout << b <<endl ; }
}s
void main ()
{ set S ;
S . input () ; // error because input is private function can not be accessed in main function

S . outp () ; // error because outp is private function can not be accessed in main function

}

* In order to avoid the above errors, the functions (input and outp) must be defined
as public in class set. In such case, we can use these functions in main().

Memory Allocation of a Class
Once the member functions are defined as a part of a class, they are placed in the
memory space.

Since all objects of the same class use the same member functions, no separate space
is allocated for member functions when the objects are created. For each object,
separate memory locations are allocated only for member data because member
variables hold different data values for different objects.

Zlad (390 Salall L yte s Object-Oriented Programming 4sbs! daa) 18

Constructor

A constructor is a ‘special’ member function whose task is to initialize the objects of
its class. It is special because its name is the same as the class name. A constructor is
a function that is executed automatically whenever an object of its associated class is

created. It i1s called constructor because it constructs the values of data members of
the class.

Example 1:

class point
fintm,n;
public:
point () // constructor
\
m=0:n=0:

1
)

When a class contains a constructor like the one defined above, it is guaranteed that
an object created by the class will be initialized automatically. For example

oint X1 ¥ /{not only creates the object X1 of type point but also initializes it data members m and n to zero
¥] yp

This is useful because the programmer may forget to initialize the object after
creating it. It’s more reliable and convenient, especially when there are a great many
objects of a given class, to cause each object to initialize itself when it’s created. The
constructor does this.

A constructor with no parameters is called (Default Constructor) and a constructor
that can take arguments is called (Parameterized Constructor).

The constructor functions have some special characteristics:
1- They should be declared in public section.
2- They are executed automatically when the objects are created.

3- They do not have return types, not even void and therefore, they cannot return
values.

Zlad (390 Salall L yte s Object-Oriented Programming 4sbsl daa) 19

Parameterized Constructors

C++ permits to pass argument to the constructor function when the objects are
created.

Example 2 : Rectangle Class with constructor
include < 10stream.h =
class Rectangle
1 mt length , width ;
public:
Rectangle (inta.intb) // constructor
{ length=a ;
Width=b ;!
int area ()
{ return length * width ; }
3
main ()
{ Rectangle R (10,4): // implicit call

cout << R .,area();
v
1

The initial values passed as arguments to the constructor function when an object
is declared this can be done in two ways (types of constructor calling):
|- By calling the constructor explicitly.
2- By calling the constructor implicitly.

The following declaration illustrates the first method:
Rectangle R1 = Rectangle (9 , 2) ; //explicit call
This statement creates a Rectangle object R1 and passes the values 9 and 2 to it.

The second method is implemented as follows:
Rectangle R1 (9, 2) ; // implicit call

This method, sometimes called the shorthand method, is used very often as it is
shorter, looks better and 1s easy to implement.

Multiple Constructors in a Class
Example 3:
include < iostream.h >
class AB
{ private: intx ,y ;
public:
AB()

{3

gl 1y ¢ Balall L yda das) Object-Oriented Programming 4sLs! 4aadll 20

AB(intz,mntr)
| =2 |
=
5
main ()
t AB m; // call constructorl
AB n(9,2): //call constructor2

1
|

When more than one constructor function is defined in class the process is called
constructor overloading, as in the following example. Generally, the process of
defining more than one function having the same name is called function
overloading.

In the above example there is the empty constructor which is do nothing
constructor (defined to satisfied (s==_:) the compiler), since there is the
parameterized constructor, the empty constructor must be defined otherwise the
compiler will show error message.

Example 4: shows multiple constructors and scape resolution operator.
include < iostream.h>
class Rectangle
{ public: int length , width ;
Rectangle ()
| length=10;
width=0; }
Rectangle (int x , inty)
| length =x;
width=y; }
mtarea () ;
void show () ;
Vi
int Rectangle :: area ()
{ return length * width ; }

void Rectangle :: show ()
{ cout << length ;
cout << width ; }

main ()

{ Rectangle R1 ,R2 (20,8);
R1.length =35 ;
R1.width = 12;

gl 1y ¢ Balall L yda das) Object-Oriented Programming 4sbs! 4aall 21

R1.show ();
R2 .show () ;
cout << "area of Rl ="<<Rl.arca();
cout << "area of R2="<<R2.area();

1
|

H.W : Write a program that uses the above program but all data are private.

Destructor
A destructor 1s used to destroy the objects that have been created by a constructor.

The destructor is a member function whose name is the same as the class name but
it preceded by a tilde (~) symbol.
For example the destructor for the class Rectangle can be defined as:
~ Rectangle ()

o

The destructor never takes any argument nor does it return any value.

It will be called implicitly by the compiler upon exit from the program to clean up
the storage that is no longer accessible.

Unlike constructors, a class may have at most one destructor.

Example 1:

include < 10stream.h >

class ABC

{ public :intx,y;
public : ABC ()

yx—2 .
=7 i}
~ABC ()
i
L
s
main ()
{ ABCm;

cout << m.x <<endl;
cout << m.y <<endl ;

}

Output : 2
7

Zlad (390 Salall L yte s Object-Oriented Programming 4=l daa) 22

Example 2 : Employee class whose member data (name , age , salary , dept). Its
member tunctions (input and show). Using constructor and destructor.

include < 10stream.h>
const int size = 30 ;

class employee

{ public: char name [size] ;
int age , salary ;
char dept [size | ;

employee ()

i i

~employee ()

SIS

void input ()

! ¢in >> name ;
cin >> age ;
cin >> salary ;
cin == dept ;

|

void show ()

{ cout << name << endl ;
cout << age << endl ;
cout << salary << end] ;
cout << dept << endl ;

|

|
main ()
{ employee emp ;
emp . input () ;
emp . show () ;

}

Zlad (390 Salall L yte s Object-Oriented Programming 4=l daa) 23

Inheritance
[t is an important aspect in OOP. One of the major advantages is the reusability of
code. The reuse of a class that has already tested, debugged and used many times can
save us the effort of developing and testing the same again. Shared properties are
defined only once, and reused as often as desired. The mechanism of deriving a new
class from an old 1s called inheritance.

The old class is referred as the base class (super class) and the new one that
inherits the properties of the base class is called the derived class (subclass).

The objects of a derived class contains all the members of the base except the
private data and functions of the base class.

A derived class can share selected properties (functions as well as data members)
of its base classes, but makes no changes to the definition of any of its base classes.

Types of Inheritance:
I- Single Inheritance.
2- Multiple Inheritance.
3- Multilevel Inheritance.
4- Hybrid Inheritance.

|l Ifil jB_l

|
| - |+_v
P

| 2| =] [=]

Hareprle Tohesrilanie TeTuallagale Trihierilanees Hhicraretdinl TRHAbtEamans

Sdulrilevel Inheritancas l l
| ™

TTrbricd Tnhericancess

Zlad (390 Salall L yte s Object-Oriented Programming 4sGsl daa) 24

Single Inheritance
In this type, there is only one derived class and only one base class.

A derived class has direct access to both its own members and the public members
of the base class.

The general form of defining a single inheritance is:

class derived class-name : access-specifier base-class-name
i

Member Data
Member Functions :

Where :
access-specifier: is either (private , public , or protected). The default is private,
that is if no access specifier is present, the access is private.

Public Access-Specifier:

Using public means that all of the public members of the base class will become
public members of the derived class and are available to the member functions of
derived just as if they had been declared inside it.

However, deriveds member functions do not have access to the private elements
of base. This 1s an important point. Even though derived class inherits base class,
it has access only to the public members of base. In this way, inheritance does not
circumvent (s 5l ,.8) the principles of encapsulation necessary to OOP.

Base Class Section Public derivation
Private Not inherited
Protected Protected
Public Public

Zlad (390 Salall L yte s Object-Oriented Programming 4sGsl daw) 25

Example 1: This example shows a single inheritance of one base class and one
derived class with public access specifier.

include <iostream,h=

class Base

{inti,j;
public: void set (int x, inty)
fi=x
=N

void view ()
{cout<<i << ;}
P
class Derived : public Base

{mt 2 ;3
public: Derived (int a)

{2 =83}
void viewD ()
lcout<<z ; }

e

5

main ()

1 Derived xd (4) :
xd.set(2,6) : //setis known to Derived
xd.view () /! view 1s known to Derived

xd . viewD () ;
!
!

Example 2: Write a program to use a base class "institute" with data (name and
emp no) and functions for input and output. The base class has a derived
class "Department” with data (dept name and tel no) and functions for
input and output.

include <jostream.h>
class institute
! private: char name [30] ;
int emp _no ;
public:
void institute input ()
{ cin >> name ;
cin >>emp no ; }
void show ()
{ cout << name <<"\n" ;
cout <<emp no <<"\n" ; }

gl 1y ¢ Balall L yda das) Object-Oriented Programming 4Ll daa) 26

class Department ; public institute
i private : char dept name [20];
int tel no ;
public :
void read ()
{ cin >> dept_name ;
cin >> tel no ; }
vold depShow ()
! cout << dept name <<™"\n";
cout << tel no <<"\n" ; }
P
main ()
1 Department D
D . institute input ()} // call to a function in class institute.
D. read() ;
D .show () /{ call to a function in class institute

D . depShow () :

(e

Inheritance and protected Members

When a member of a class is declared as protected, that member is not accessible by
nonmember elements of the program. Access to a protected member is the same as
access to a private member—it can be accessed only by the members of its class.

If the base class 1s inherited as public, then the base class’ protected members
become protected members of the derived class and are, therefore, accessible by the
derived class. By using protected, you can create class members that are private to
their class but that can still be inherited and accessed by a derived class (Making a
private Member inheritable).

Example 3:
#include <iostream.h>
class base
{ protected: 1int1,J; //private to base, but accessible by derived
public:
void set (inta,intb){ i=a ; j=b;}
void show () { cout <<i<<""<<j<<™n"; }
5
class derived : public base
{ intk;
public: void setk() { k=1 *j; } // derived may access base’s i and j. Ifi and j declared as

// private in base, then derived would not have access to
// them and the program would not compile.

Zlad (390 Salall L yte s Object-Oriented Programming 4=l daa) 27

void showk() {cout<<k<<™n";} };
main()
{ derived ob ;
ob.set (2,3); // OK, known to derived
ob.show() ; // OK, known to derived
ob.setk() ;
ob.showk() ;

L
Example 4: Shows public inheritance and protected members. This example also use
the same functions’ names in both base and derived class.
include <iostream.h>=
const int size = 30 ;
class employee
{ protected: char name [size] ;
int age ;
char department [size] ;
void initialize ()
! cin >> name
cin >> age
cin >> department ;
i
void describe ()
{ cout << name << endl ;
cout << age << endl ;
cout << department

|

|
fa
class manager : public employee
! protected : int level ;
void initialize ()
| employee :: initialize () ; // call to function initialize() in employee class
cin == level;
f
void describe ()
{ employee :: describe (); // call to function describe() in employee class
cout <<level ; }
s
main ()
{ manager aa;
aa . initialize () ; // error, manager:: initialize () is not accessible. initialize() is protected
aa . describe () ; // error, manager:: describe () is not accessible. describe () is protected

}

Zlad (390 Salall L yte s Object-Oriented Programming 4=l daa) 28

Note: there are two methods to avoid the above errors:
1- Write initialize() and describe() in public section to call them in main().
2- Write initialize() in protected section, Write describe() in public section and
call the function initialize() in the describe function.

H.W: Write the above program with modification to avoid the errors.

Note: In the above example, the scope resolution operator (::) tells the compiler that
this version of initialize() and describe() belong to the employee class (i.e.,
this initialize() and describe() are in employee’s scope).

In C++, several different classes can use the same function name. The
compiler knows which function belongs to which class because of the scope
resolution operator.

Private Access-Specifier:

When a access specifier is private, all public and protected members of the base
class become private members of the derived class.

Therefore, the public members of the base class can only be accessed by the
member functions of the derived class and cannot be accessed by parts of your
program that are not members of either the base or derived class.

. Base Class Section Private derivation

- Private Not inherited
Protected Private
Publie Private

Example 1:
include <iostream.h>
class human
{ public : char name [30] ;
int age ;
void getdata ()
{ cin >> name ;
cin >> age ; }
void putdata ()
{ cout << name << endl ;
cout << age << endl ; }

s

class worker : private human
{ public : int grade ;

gl 1y ¢ Balall L yda das) Object-Oriented Programming 4L 4aa) 29

void mput ()

| cin>> grade ; }
void view ()

i cout << grade ; }

i
fos

main ()

1 worker W ;
W. getdata () ; // error message('human::getdata' is not accessible)
W.input () ;
W. putdata () ; // error message('human::putdata' is not accessible)
W. view () ;

[}

i

Protected Access Specifier:
It 1s possible to inherit a base class as protected. When this 1s done, all public and
protected members of the base class become protected members of the derived class.

Base Class Section | Protected derivation |
Private ~__Not inherited
Protected ~ Protected

Public Protected

Example 1:
#include <iostream.h>
class base
{ protected: int1,]; //private to base, but accessible by derived
public:
void setij (inta,intb) {i=a ; j=b ; }
void showij () { cout <<i<<" "<<j<<"\n" ; }

¥

class derived : protected base // Inherit base as protected.

{int k;

public:

void setk() { setij (10, 12) ; k=1%7; } // ok, access to setij , i ,and j
void showall(') { cout <<k <<" " ; showij (); } //ok

s

main()

{ derived ob;
ob.setij(2 , 3) ; //illegal, setij() is protected member of derived
ob.setk() ; // OK, public member of derived
ob.showall() ; // OK, public member of derived
ob.showij() ; //illegal, showij() is protected member of derived

}

Zlad (390 Salall L yte s Object-Oriented Programming 4sGsl daw) 30

As you can see by reading the comments, even though setij() and showij() are public
members of base, they become protected members of derived when it is inherited using
the protected access specifier. This means that they will not be accessible inside main().
The following table summarizes the visibilities of members and modifications on
them when they are mherited.

Derived Class Visibility (derivation)

Base Class Section

public private protected
Private . Not inherited Not inherited Not inherited
Protected Protected private Protected
Public public private Protected |

Note: In all cases, the private members are not inherited; therefore they never
become members of the derived class.

Multiple Inheritances

In multiple inheritances, a class inherits the properties of two or more classes. They
allow us to combine the features of several existing classes as a starting point for
defining new classes.

The general form of a derived class with multiple base classes is as follow:

Class Derived-name : access-specifier Base-class1-name
access-specifier Base-class2-name
t
Member Data
Member Functions ;

et

Example:
include <iostream.h>
class Parent]
{ public : intx ;
void display x ()
{cout << x ;}
5
class Parent2
{ public:inty;
void display y ()
{ cout <<y}

¥

gl 1y ¢ Balall L yda das) Object-Oriented Programming 4sbs! 4aall 31

class Derived : public Parentl , public Parent2
i public : void fillAB (int A, int B)
{x=A;
¥ =B 5
Pl
main ()
1 Derived N ;
N.fillAB(3,10) ;
N.display x () : // from Parentl (Base)
N .display y () ; / from Parentl (Base)
!
i

Multilevel Inheritance
The mechanism of deriving a class from another "derived class" is known as
multilevel inheritance.

If the class (A) serves as a base class for the derived class (B) which in turn serves as
a base class for the derived class (C), the class B is known as Intermediate Base
class since it provides a link for the derived class C.

The chain ABC is known as inheritance path.

The general form of multilevel inheritance is as follow:

class Base-class-name

i
i

class Derived-class-namel : access-specifier Base-class-name

{

}s

class Derived-class-name? : access-specifier Derived-class-namel

{
L

Zlad (390 Salall L yte s Object-Oriented Programming 4sbs! daa) 32

Example |:
include <iostream.h>
class Base
{ protected : Int x , v :
public: void input (inta ,intb)
i x=a;
y =b i}
void display ()
tcout << x << endl <<y ;}
yoos
class Derived] : public Base
{ private : z ;
public : void inputz ()
12 =X + vy :} /ok useofxandybecause they are inherited as protected
void displayz ()
{cout << "z=" ;}
i
class Derived2 : public Derivedl
!t k;
public : void inputk ()
t kK =x %y} /ok,xandy are inherited as protected
void displayk ()
{ cout << "k="= k ;}
P s
main ()
! Derivedl obl ;
Derived2 ob2 ;
obl .input (3 , 7);
obl . displa}r() : Note that ob1 calls its functions
obl . inputz () ; and functions of Base.

obl . displayz () ;
ob2.input(2 ,10);

ob2 . display () ;
ob2 . inputz () ; Note that ob2 calls its functions,

" - functions of ob1, and functions of Base.
ob2 . displayz () ;

ob2 . inputk () ;
ob2 . displayk (); }

Note: When a derived class is used as a base class for another derived class, any
protected member of the initial base class that is inherited (as public) by the
first derived class may also be inherited as protected again by a second
derived class. For example, the program above is correct, and derived2 does
indeed have access to x and y.

Zlad (390 Salall L yte s Object-Oriented Programming 4sbs! 4aa) 33

If, however, base were inherited as private, then all members of base would
become private members of derived1, which means that they would not be
accessible by derived2. (However, x and y would still be accessible by derived1.)
This situation is illustrated by the following program, which is in error (and won'
compile). The comments describe each error:

Example 2: // This program will not compile.
#include <iostream.h>

class base
{ protected: intx,vy;
public:
voidset(inta,intb) {x=a; y=b ;
void show () { cout =<x <<"" <<y <
b
class derived] : private base // Now, all elements of base are private in derived]
{ itk ;
public:
void setk() { k=x*y:} // OK, this is legal because x and y are private to derived]
void showk() { cout <<k <<"\n"; }
1.

/I Access to x, y, set(), and show() not inherited.
class derived2 : public derived|
1 ntm;

public:

vold setm() { m=x — v : } // Error, illegal because x and y are private to derived]
void showm() | cout <<m <<"\n"; }

i

main()

¢ derived] obl;
derived2 ob2;
obl.set(1, 2); // error, cant use set()
ob1.show(); // error, can't use show()
ob2.set(3, 4); // error, can't use set()
ob2.show(); // error, can't use show()

}

Note: Even though base is inherited as private by derivedl1, derived1 still has
access to base’s public and protected clements.

Zlad (390 Salall L yte s Object-Oriented Programming 4sGsl daa) 34

Hierarchical Inheritance:

Many programming problems can be cast into a hierarchical where certain features of one
level are shared by many others below that level. The following figure shows a hierarchical
classification of students in a university.

Shivdents

E

Azl) Fingincorin L | Ielesclicsal |

b %
7
o M

v | [Em] | e

Hybrid Inheritance
There could be situations where we need to apply two or more types of inheritance
to design a program.

#include <iostream.h>
class student student
{ protected: int r ; 4
e bl Ic_' . ; test sports
vold get number(inta)
i 1 4
. a . E [
void put_number() result
{cout <<"r ="<<r << endl ; }

o
class test : public student
{ protected : float subl;
float sub2;
public:
void get_marks(float x, float y)
fsubl=x ; sub2=y ; }
vold put marks()
! cout << " Marks in subl =" <<subl << endl ;
cout <<'" Marks in sub2 =" <<sub2 << endl; }
1.
IS
class sports
{ protected: float score ;
public:
void getdata (float s)
{ score =s ; }
void putscore ()
{ cout << " sports " << score << endl ; }

Zlad (390 Salall L yte s Object-Oriented Programming 4sGsl daw) 35

class result : public test , public sports
i float total ;
public:
void display()
{ total = subl + sub2 + score ;
put_number () ;
put marks () ;
putscore () ;

cout << "total =" <<total << endl ; }
b
main ()
{1 result stdl ;
std].get number (111) ;
stdl.get marks (75.0,59.5) ;
std].getdata (63.5) ;
std].display ()

(e

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sLs! 4aadl 36

Friend Function
The private member cannot be accessed from the functions that are not member to
the class. However, there could be a situation where two classes need to share a
particular function.

In such situations C++ allows the common function to be made friendly with both
the classes thereby allowing the function to have access to the private data of
these classes.

Such a function need not be a member of any of these classes.

To make an outside function “friend” to a class it will be declared as in the
following example:
Example 1:

class ABC
{ public:
friend void xyz () ; //declaration or prototype

}

The function declaration should be preceded by the keyword friend.

The function definition does not use either the keyword friend or the scope
operator (::).

A friend function has certain special characteristics:

e It is not in the scope of the class to which it has been declared as friend.

e Since it is not in the scope of the class, it cannot be called using the object of
that class it can be invoked like a normal function without the help of any
object.

e Unlike member functions, it cannot access the member names directly and has
to use an object name and dot membership operator with each member name.

e [t can be declared either in the public or the private part of a class without
affecting its meaning.

e Usually, it has the objects as arguments.

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbsh 4aa) 37

Example 2:

class sample

{ private: intx,y ;

public:

sample (inta,intb){ x=a ; y =b ; }
friend float mean (sample) ;

}s

float mean (sample s) // note that there is no (::) operator

{ return (s.x + s.y) / 2.0 ; } //itusess.x instead of x

main ()
{ sample a (25,40) ;
cout << ”mean value =” << mean (a) << endl ;

}

Member functions of one class can be friend functions of another class. In such
cases, they are defined using the scope resolution operator as shown below:

Example 3:
class X
{
int funl () ; //member function of X
b
class Y
(
1
friend int X :: funl() ; //The function funl() is a member of class X and a friend of Y
} i

We can also declare all the member function of one class as the friend functions of
another class. In such case, the class is called a friend class.

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbs! 4aa) 38

Polymorphism
Polymorphism is one of the crucial features of OOP. It simply means "one name,
multiple forms".

Polymorphism

AN

Compile-time Run-time
Polymorphism Polymorphism

VA

Function Operator Virtual
Overloading Overloading Function

Function Overloading

Several different functions can be given the same name. Function overloading is one
of the most powerful features of C++ programming language. It forms the basis of
polymorphism (compile-time polymorphism).

The overloaded member functions are selected for invoking by matching arguments,
both type and number. This information is known to the compiler at the compile
time and, therefore, compiler is able to select the appropriate function for a particular
call at the compile time itself. This is called early binding or static binding or static
linking. Also known as compile time polymorphism, early binding simply means
that an object is bound to its function call at compile time.

Function Overloading: is the process of using two or more functions with the same
name but differing in the signature (the number or type of arguments or both).

To avoid ambiguity, each definition of an overloaded function must have a unique
signature.

All of you know that we cannot have two variables of the same name, but can we
have two Functions having the same name. Such functions essentially have
different argument list. The difference can be in terms of number or type of
arguments or both.

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbs! 4aa) 39

Notice that a function cannot be overloaded only by its return type. At least one of
its parameters must have a different type.

In overloaded functions, the function call determines which function definition
will be executed.

The advantages of overloading are:
® [t helps us to perform same operations on different data-types without having the
need to use separate names for each version.

e The use of overloading may not have reduced the code complexity /size but has
definitely made it easier to understand and avoided the necessity of remembering
different names for each version function which perform identically the same task.

Examplel: We have two functions with the same name: calc
We have different signatures: (int) , (int, int)
Overloading Functions differ in terms of number of parameters

#include <iostream.h>
class arith
{ public:
void calc (int num1)
{ cout << " Square of a given number: " << numl * numl <<endl ; }

void calc (int num1, int num2)
{ cout << " Product of two numbers: " << numl * num2 <<endl ; }
}i
main ()
{ arith a;
a.calc (5)) /[Based on the arguments we use when we call the calc function, the
a.calc (6 5 7) ; /! compiler decides witch function to use at the moment we call the function

}

Example 2: Overloading Functions differ in terms of type of parameters

include <iostream.h>
int func (int i) ;
double func (double 1) ;

main ()
{ cout<< func (10) ; // func(int1) is called
cout << func (10.24) ; // func (double 1) is called

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sLs! 4aadll 40

}
int func (int 1)
{ return i +5; }

double func (double 1)
{ return i *8 ; }

Example 3: Is the program below, valid ?

#include<iostream.h>
int func (int 1)
{ returni ; }

double func (int i)

{

return 1;

}

void main ()

{
cout<<func(10);

cout<<func(10.201);
}

No, because you can’t overload functions if they differ only in terms of the data type
they return.

H.W. Write a program to use three functions (sum) to find the summation of two
numbers.

Operator Overloading

C++ tries to make user-defined data types behave in much the same way as the built-
in types. For instance, C++ permits to add two variables of user defined types with
the same syntax that is applied to the basic types. This means that C++ has the
ability to provide the operators with special meaning for a data type. The mechanism
of giving such special meaning to an operator is known as “operator overloading”.

All C++ operators can be overloaded (given additional meaning) except the
following:

- class member access operator (.)

- scope resolsution operator (::).

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4=bsh dsa) 41

- size operator (sizeof)
- conditional operator (? :)

When an operator is overloaded, its original meaning is not lost. For instance, the
operator +, which has been overloaded to add two vectors, can still be used to add
two integers.

Although the semantic of an operator can be extended, we cannot change its
syntax, the grammatical rules that govern its use such as the number of operands,
precedence and associatively. For example: the multiplication operator is higher
precedence than the addition operator.

Defining Operator Overloading:

The general form of an operator function is

Return type classname :: operator op (arguments-list)

{
Function body

Operator is reserved word and (op) is the operator being overloaded, operator op is
the function name.

Note that operator functions can be either member function or friend function.

A basic difference between them is that a friend function take two argument for
binary operators and one for unary operator while the member function take one
argument for binary operator and no argument for unary operator.

This is because the object used to invoke the member function is passed
implicitly and therefore is available for the member function. This is not the case
with the friend function.

The process of overloading involves the following steps:

1- First, create a class that defines the data type that is to be used in the overloading
operation.

2- Declare the operator function operator op() in the public part of the class. It may
be either a member function or a friend function.

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbs! 4xadll 42

3- Define the operator function to implement the required operations.

Overloading Unary Operators
Example: A minus operator, when used as a unary, takes just one operand
void space :: operator - ()
{ x=-x;

y=-Y.

2= -7 ;
}
void space :: getdata (inta ,intb , intc)
{x=a;

y=b;

Z=cC; }
void space :: display ()
{

cout<<x << ""<<y<<""<<z<< "\n" ; }
main ()
{ space s ;

s . getdata (10, -20,30) ;

cout << "s:"

s . display () ;

s.operator-() ; // or -s;

cout << "s: " ;

s . display () ;
}

Note that statement like: s2 = -sl ;
Will not work because the function operator — () does not return any value. It can
work if the function is modified to return object.

Overloading Unary Operators using Friends
To overload a unary minus operator using a friend function as follow:

void operator - (space & ss)

[$s.X =- 88.X ;
SS.y =-88.VY ;
SS.Z =-8S .Z ;

Overloading Binary Operators:
The following example explain how to perform overloading for + operator

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbsh 4) 43

class complex
{ float x ;
float y ;
public:
complex ()

{1

complex (float real , float image)
{ x = real ;
y = image ; }

complex operator + (complex C) ;

void display()
{cout<<x<<","<<y<<"\n"; }
}s
complex complex :: operator + (complex C)
{ complex temp;
temp.x=x + C.x ;
temp.y=y + C.y ;
return temp ;
}
main ()
{ complex cl, ¢2 , ¢c3 ;
cl =complex (2.5, 3.5) ;
c2=complex (1.6, 2.7) ;
c3=cl+c2; // orc=cl.operator+(c2);

cout<<'"cl="; cl .display () ;

cout <<"c2="; c2.display () ;

cout<<"c3="; c3.display () ;
}

Overloading Binary Operators using Friends
The complex number program discussed in the previous section can be modified
using a friend operator function as follows:

1- Replace the member function declaration by the friend function declaration
friend complex operator + (complex , complex)
2- Redefine operator functions as follows:

complex operator + (complex a , complex b)
{ complex temp ;
temp.x=a.x +b.x ;

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sLs! 4xadll 44

temp.y=b.y +b.y ;
return temp ;

}

In this case the statement
c3 =cl +c2;
Is equivalent to
c3 =operator+(cl,c2) ;

Note that the friend and member functions give the same result. Why then these
alternatives? Consider a situation where one operand of binary operator is object and
the second is build in data type as shown below:

A=B+2; (orA=B*2)

This will work in member function and A , B object of the same class.

But the statement:
A=2+B; (orA=2 *B)

Will not work, this is because the left hand operand which is responsible for
invoking the member function should be object of the same class. Friend function
solves this problem.

Pointers to Objects
Just as you can have pointers to other types of variables, you can have pointers to
objects.

Sometimes, we don't know, at the time we write the program, how many objects we
want to create. When this is the case we can use new to create objects while the
program is running.

Object pointers are useful in creating objects at run time. We can also use the object
pointer to access the public members of an object.

Item x;

[tem™ ptr;

[tem *ptr=&x;

Ptr->show () ; it is equivalent to (*ptr)->show();

We also can create the objects using pointers and new operator as follows:

Item*ptr=new Item;

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4=Lsh daa) 45

ptr->show () ;
Item*ptr =new Item[10] ;
ptr [0] -> show () ;

When accessing members of a class given a pointer to an object, use the arrow (—>)
operator instead of the dot operator.

The next program illustrates how to access an object given a pointer to it:

Example 1:

class distance

{ private: int feet ;
float inches ;

public: void getdist ()
{ cin >> feet ;
cin >>inches ; }
void showdist ()
{ cout << feet << "\n" << inches ; }
;s
main ()
{ distance dist ;
distance * distptr ; // pointer to distance
dist . getdist () ;
dist . showdist () ;

distptr = new distance ; // points to new distance object
distptr -> getdist () ; // access object members with -> operator

Note: that we can not refer to the member functions in the object pointed by distptr
using the dot (.) membership-access operator, as in

distptr . getdist () ; // will not work, distptr is not a variable

The dot operator requires the identifier on its left to be a variable. Since distptr is a
pointer to a variable, we need another syntax.

One approach of dereference (get the contents of the variable pointed by) the
pointer:

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sUS! 4aadl 46

(*distptr) . getdist () ; // ok but inelegant
The parentheses are necessary because the dot (.) has higher the indirection operator
(*). An equivalent but more concise approach is by using the membership-access
operator ->.

distptr -> getdist () ; // better approach

Example 2: An Array of pointer to object
include <iostream.h>
class item
{ int code ; float price ;
public:
void getdata (inta , float b)
{code =a ; price=b ; }
void show ()
{ cout << code << endl ;
cout << price << endl ; }
s
const int size = 2 ;
main ()
{ item *p = new item [size] ;
item *d = P ; // another pointer to first location in item in order not to loss the address of location
mnt x , 1 ;
float y ;
for(1=0 ; i< size ; i++)
{ cout << "input code and price for item" << i+1 ;
cin>> x >> vy ;
p->getdata(x,y);
p++
}
for(i=0; 1<size ; 1++)
{cout << "item: " << i+l << endl ;
d-> show () ;
d++ ;

}
Pointers to Derived Class

It is means that a single pointer variable can be made to point to objects belonging to
different classes, for example, if B is a base class to the derived class D then

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbsh daa) 47

declaring a pointer pointing to the base class can also be used to point to the derived
D.

B *ptr ;

Bb;

Dd;

ptr = &b ;

ptr = &d ; // This is perfectly valid because d is an object derived from the class B

Example 3:
include <iostream.h>
class B
{ public: void display ()
{ cout<<"helloB" << endl; }

b
class D : public B
{ public :
void display()
{ cout <<"helloD"<<endl ; }
s
main ()
{Ba ; Db ;
B *p ;
p=&a ;
p ->display () ;
p= &b ;

p -> display () ; //call to display in base class not in derived
}

Note: There is a problem in using p to access the public members of the derived
class. Using p, can access only the members inherited from the class B and not the
functions in the derived class. In case the derived contain the function in the same
name of the base class then any reference to that member by pointer p will always
access the base class member.

Virtual Functions

An essential requirement of polymorphism is the ability to refer to objects without
any regard to their classes. This necessitates (234 -+ 5) the use of a single pointer
variable to refer to the objects of different classes.

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbs! 4aa) 48

Why are virtual functions needed? Suppose you have a number of objects of
different classes but you want to put them all in an array and perform a particular
operation on them using the same function call.

Virtual functions can be used when a member function is called through a pointer
of the type pointer to a base class. The function called will be the function of that
name in the derived class, even though the pointer is declared as a pointer to the
base class declared to be virtual.

The function in base class is declared as virtual using the keyword virtual
preceding its normal declaration.

C++ will determines which function to use at run time based on the type of object
pointed to by the base pointer, rather than the type of the pointer. Thus, by
making the base pointer to point to different objects, then we could execute
different versions of the virtual function.

Rules for virtual functions:

1- The virtual function must be member of some class.

2- They are accessed by using object pointer.

3- A virtual function can be friend of another class.

4- A virtual function in the base class must be defined even if it will not use.

5- The prototype of virtual function in the base class and derived class must be
identical, if two functions with the same name has different prototype C++
considers them as overloaded functions not as virtual function (ignored).

6- While a base pointer can point to any type of derived object, the reverse is not
true. That is, we cannot use a pointer to a derived class to access an object of the
base type.

7- If the virtual function is defined in the base class. It need not be necessarily
redefined in the derived class. Calls will invoke the base function.

Example 1: The following example illustrates the difference between a normal
member function and virtual function.
include <iostream.h>
class base
{ public:
virtual void show () { cout << "base class\n"; }
void ABC () { cout << "ABC from base \n"; }

)i

class dervl : public base
{ public:
void show () { cout << "derv1 class\n" ; }

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sbsh 4aa) 49

void ABC () { cout << "ABC from dervl \n" ; }
)

class derv2 : public base
{ public:
void show () { cout << "derv2 class\n" ; }
void ABC () { cout << "ABC from derv2 \n" ; }
}s
main ()
{ dervl D1 ;
derv2 D2 ;
base *ptr ;

ptr = &D1 ; // pointer to derived
ptr -> show () ; // which show method do we get? ans: dervl's show
ptr -> ABC () ; // which ABC method do we get? ans: base's ABC

ptr = &D2 ;
ptr -> show () ; // call derv2’s draw
ptr -> ABC () ; // call base's ABC

base *list[10] ; // declare an array of 10 pointers to base
list[0] = new dervl ; // setlist[0] to point to dervl
list[1] = new derv2 ; //andlist[1] to point to derv2

for(inti=0;1<2;i++)
list[i] -> show () ; // call draw method of the appropriate derived class

}

Example 2:
include <iostream.h>
class base
{ public: virtual void show () // virtual function
{ cout<<"base\n" ;}
!
class Dervl : public base
{ public :
void show ()
{ cout<< "Dervl \n" ;}
s
class Derv2 : public base
{ public :
void show ()

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4sLs! 4aadll 50

{ cout<< "Derv2 \n" ;}

)

main ()
{ Dervl dvl ;
Derv2 dv2 ;
Base * ptr ; // pointer to base class

ptr= & dvl ; //put address of dvl in pointer
ptr ->show () ; // call dervl ’s show

ptr= & dv2 ; // put address of dv2 in pointer
ptr ->show () ; // call derv2 ’s show

}

The same function call ptr -> show () executes different functions, depending on
the contents of prr. The rule is that the compiler selects the function according to the
contents of the pointer, not on the type of the pointer.

Note:

A class that declares or inherits a virtual function is called a polymorphic class.

Early Binding and Late Binding

In normal function (Non-Virtual), the compiler has no problem with the expression
ptr->show() ; // it always call to the show function in the base class.

But in virtual the compiler doesn't know what is the contents of ptr. It could be the
address of an object of the Dervl1 class or of the Derv2 class.

At run-time, when it is known what class is pointed to by ptr the appropriate version
of show() will be called. This is called late binding or dynamic binding. (Choosing
functions in the normal way, during compilation, is called early binding, or static
binding). Late binding requires some overhead but provides increased power and
flexibility.

Pure virtual function & Abstract Class
It is normal practice to declare a function virtual inside the base class and redefine it
in the derived classes. The function in the base class is seldom used for performing

Clas 5l ¢ Bkl (e dlas] Object-Oriented Programming 4=bsh 4aa 1) 51

any task. Such functions are called “do nothing” functions or called pure virtual
function.

A “do nothing” function may be defined as follows:
virtual void display () =0 ;

The value O is not assigned to anything. The =0 syntax is simply how we tell the
compiler that a function will be pure.

We can not create objects of abstract class.
Note that, although this is only a declaration you never need to write a definition
of the base class.

A pure virtual function is a function declared in the base class that has no
definition relative to the base class. In such cases, the compiler requires each derived
class to either define the function or redeclare it as a pure virtual function.

Any class containing pure virtual functions cannot be used to declare any objects
of its own. Such classes are called abstract base classes.

The main objective of an abstract base class is to provide some traits (<!) to the
derived classes and to create a base pointer required for achieving runtime
polymorphism.(i.e.,: we can create pointers to an abstract class and take advantage
of all its polymorphic abilities.

The main difference between an abstract base class and a regular polymorphic
class is that we cannot create instances (objects) of it.

