zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsa i 23

emp . show () ;

}

Inheritance
It is an important aspect in OOP. One of the major advantages is the reusability of
code. The reuse of a class that has already tested, debugged and used many times can
save us the effort of developing and testing the same again. Shared properties are
defined only once, and reused as often as desired. The mechanism of deriving a new
class from an old is called inheritance.

The old class is referred as the base class (super class) and the new one that
inherits the properties of the base class is called the derived class (subclass).

The objects of a derived class contains all the members of the base except the
private data and functions of the base class.

A derived class can share selected properties (functions as well as data members)
of its base classes, but makes no changes to the definition of any of its base classes.

Types of Inheritance:
1- Single Inheritance.
2- Multiple Inheritance.
3- Multilevel Inheritance.
4- Hybrid Inheritance.

A
=]
=] [<] [=]
Smgle Inhentance kultiple Inheritances Hierarchical Inheritances

A
¢ L

-

Multilevel Inheritances l |

o

Hyvbrid Inheritances

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4:ush dxa i 24

Single Inheritance
In this type, there is only one derived class and only one base class.

A derived class has direct access to both its own members and the public members
of the base class.

The general form of defining a single inheritance is:

class derived class-name : access-specifier base-class-name

{
Member Data ;

Member Functions ;

}

Where :
access-specifier: is either (private , public , or protected). The default is private,
that is if no access specifier is present, the access is private.

Public Access-Specifier:

Using public means that all of the public members of the base class will become
public members of the derived class and are available to the member functions of
derived just as if they had been declared inside it.

However, derived's member functions do not have access to the private elements
of base. This is an important point. Even though derived class inherits base class,
it has access only to the public members of base. In this way, inheritance does not
circumvent (&b)) the principles of encapsulation necessary to OOP.

Base Class Section Public derivation
Private Not inherited
Protected Protected
Public Public

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsa i 25

Example 1: This example shows a single inheritance of one base class and one
derived class with public access specifier.
include <iostream.h>
class Base
{inti,j;
public: void set (intx, inty)
{i=x;
1=y}
void view ()
{cout<<i << j ;}
2
class Derived : public Base
{int z ;
public: Derived (int a)
{z=a;}
void viewD ()
{cout<<z ; }
s
main ()
{ Derived xd (4) ;
xd.set(2,6) ; //setisknown to Derived
xd . view () ; // view is known to Derived
xd . viewD ();

}

Example 2: Write a program to use a base class "institute" with data (name and
emp_no) and functions for input and output. The base class has a derived
class "Department™ with data (dept_name and tel _no) and functions for
input and output.

include <iostream.h>

class institute

{ private: char name [30] ;
intemp_no ;

public:
void institute_input ()
{ cin >> name ;
cin>>emp_no ;}

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsa i 26

void show ()
{ cout << name <<"\n" ;
cout <<emp_no <<"\n" ; }

};

class Department : public institute
{ private : char dept_name [20] ;
int tel no ;
public :
void read ()
{ cin >>dept_name ;
cin>>tel no ; }
void depShow ()
{ cout << dept_name <<"\n";
cout << tel no <<™\n" ; }
2
main ()
{ Department D ;
D . institute_input () ; // call to a function in class institute.
D. read () ;
D . show (); // call to a function in class institute
D . depShow () ;

}

Inheritance and protected Members

When a member of a class is declared as protected, that member is not accessible by
nonmember elements of the program. Access to a protected member is the same as
access to a private member—it can be accessed only by the members of its class.

If the base class is inherited as public, then the base class' protected members
become protected members of the derived class and are, therefore, accessible by the
derived class. By using protected, you can create class members that are private to
their class but that can still be inherited and accessed by a derived class (Making a
private Member inheritable).

Example 3:

#include <iostream.h>

class base

{ protected: inti, j; // private to base, but accessible by derived
public:

voidset (inta,intb){ i=a; j=b;}

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsa i 27

void show () {cout <<i<<""<<j<<"\n"; }
b
class derived : public base
{ intk;
public: void setk() { k =1 *j; } // derived may access base's i and j. If i and j declared as
/Il private in base, then derived would not have access to
// them and the program would not compile.
void showk() {cout<<k<<"™n";} };
main()
{ derived ob ;
ob.set (2, 3); // OK, known to derived
ob.show() ; // OK, known to derived
ob.setk() ;
ob.showk() ;

}

Example 4: Shows public inheritance and protected members. This example also use
the same functions' names in both base and derived class.
include <iostream.h>
const int size = 30 ;
class employee
{ protected: char name [size] ;
int age ;
char department [size] ;
void initialize ()
{ cin>>name
cin >> age ;
cin >> department ;
}
void describe ()
{ cout << name << endl ;
cout << age << endl ;
cout << department ;

¥
I3
class manager : public employee
{ protected : int level ;

void initialize ()

{ employee :: initialize () ; // call to function initialize() in employee class

cin >> level;
¥

void describe ()

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4:bs dsa i 28

{ employee :: describe (); // call to function describe() in employee class
cout << level ; }
2
main ()
{ manager aa;
aa . initialize () ; // error, manager:: initialize () is not accessible. initialize() is protected
aa . describe () ; // error, manager:: describe () is not accessible. describe () is protected
¥
Note: there are two methods to avoid the above errors:
1- Write initialize() and describe() in public section to call them in main().
2- Write initialize() in protected section, Write describe() in public section and
call the function initialize() in the describe function.

H.W: Write the above program with modification to avoid the errors.

Note: In the above example, the scope resolution operator (::) tells the compiler that
this version of initialize() and describe() belong to the employee class (i.e.,
this initialize() and describe() are in employee's scope).

In C++, several different classes can use the same function name. The
compiler knows which function belongs to which class because of the scope
resolution operator.

Private Access-Specifier:

When a access specifier is private, all public and protected members of the base
class become private members of the derived class.

Therefore, the public members of the base class can only be accessed by the
member functions of the derived class and cannot be accessed by parts of your
program that are not members of either the base or derived class.

Base Class Section Private derivation
Private Not inherited
Protected Private
Public Private
Example 1:
include <iostream.h>
class human

{ public : char name [30] ;
intage ;

zlas (3419 8 Bakal) (e slas) Object-Oriented Programming 4sbs dsa i 29

void getdata ()

{ cin >> name ;
cin>>age ; }

void putdata ()

{ cout << name << endl ;
cout << age << endl ; }

}

class worker : private human
{ public: int grade ;

void input ()
{ cin>>grade ; }
void view ()
{ cout << grade ; }
}
main ()
{ worker W ;
W. getdata () ; // error message(‘human::getdata’ is not accessible)
W.input () ;
W. putdata () ; // error message(‘human::putdata’ is not accessible)
W. view () ;
}

Protected Access Specifier:
It is possible to inherit a base class as protected. When this is done, all public and
protected members of the base class become protected members of the derived class.

Base Class Section Protected derivation
Private Not inherited
Protected Protected
Public Protected

Example 1:

#include <iostream.h>

class base

{ protected: inti,j; // private to base, but accessible by derived

public:

void setij (inta,intb){i=a ; j=b ;}

void showij () {cout<<i<<" "<<j<<™\n" ; }
Y
class derived : protected base // Inherit base as protected.
{intk;

gl 31y L3z Balall e lae) Object-Oriented Programming 4:tsh 4xa i 30

public:
void setk() { setij (10, 12) ; k =1*] ; } // ok, access to setij , i ,and j
void showall() { cout << k <<" " ; showij (); } // ok
2
main()
{ derived ob;

ob.setij(2, 3) ; //illegal, setij() is protected member of derived

ob.setk(); // OK, public member of derived

ob.showall() ; // OK, public member of derived

ob.showij() ; //illegal, showij() is protected member of derived
¥
As you can see by reading the comments, even though setij() and showij() are public
members of base, they become protected members of derived when it is inherited using
the protected access specifier. This means that they will not be accessible inside main().
The following table summarizes the visibilities of members and modifications on
them when they are inherited.

Base Class Section 'Derlved Class VIS'IbI|Ity (derivation)
public private protected
Private Not inherited Not inherited Not inherited
Protected Protected private Protected
Public public private Protected

Note: In all cases, the private members are not inherited; therefore they never
become members of the derived class.

; 10l aidls
JA S o) oSaal) (e cle iy public < <Y class A elcac) (¥l class) &y 1Al -
.main() 31 dla Jala gh ;¥ class I J)sa saal
058 o) e private s protected S @Y1 class J) (e slac¥ &5 i 1D Wl -
. public J) s 5w 48 22 0 Y caamain() J oY Jadd o) JAIa elaac V) ellil cle xiuy)

Multiple Inheritances

In multiple inheritances, a class inherits the properties of two or more classes. They
allow us to combine the features of several existing classes as a starting point for
defining new classes.

The general form of a derived class with multiple base classes is as follow:

Class Derived-name : access-specifier Base-classl-name,
access-specifier Base-class2-name

Member Data ;

NMemhber Erinectinne -

gl 31y L3z Balall e lae) Object-Oriented Programming 4sbs dsadll 31

Example:
include <iostream.h>
class Parentl
{ public: intx ;
void display_x ()
{cout << x ;}

s
class Parent?2
{ public:inty;
void display_vy ()
{cout <<y ;}
¥

class Derived : public Parentl , public Parent2
{ public : void fillAB (int A, int B)

{x =A;
y=B;}
}
main ()
{ Derived N ;

N.fillAB(3,10) ;
N . display_x () ; //from Parentl (Base)
N . display_y () ; // from Parentl (Base)

}

Multilevel Inheritance
The mechanism of deriving a class from another "derived class” is known as
multilevel inheritance.

If the class (A) serves as a base class for the derived class (B) which in turn serves as
a base class for the derived class (C), the class B is known as Intermediate Base
class since it provides a link for the derived class C.

gl 31y L3z Balall e lae) Object-Oriented Programming 4sbs dsa i 32

The chain ABC is known as inheritance path.

The general form of multilevel inheritance is as follow:

class Base-class-name

{
Lo

class Derived-class-namel : access-specifier Base-class-name

class Derived-class-name2 : access-specifier Derived-class-namel

{
Lo

Example 1:
include <iostream.h>
class Base
{ protected : int x , y ;
public: void input (inta ,intbh)
{x=a;
y=>b;}
void display ()
{cout << x << endl <<y ;}
}
class Derivedl : public Base
{ private : z ;
public : void inputz ()
{z = x +y ;} Ilok, useof x and y because they are inherited as protected

void displayz ()
{cout << "z=" ;}
}
class Derived? : public Derivedl
{ int k;

public : void inputk ()
{ k = x *y ;} llok,xandy are inherited as protected
void displayk ()

gl 31y L3z Balall e lae) Object-Oriented Programming 4sbs dsa i 33

{ cout << "k="<<k ;}

}

main ()

{ Derivedl obl ;
Derived2 ob2 ;
obl.input(3, 7);
obl . display () ; Note that ob1 calls its functions
obl . inputz () ; and functions of Base.

obl . displayz () ;
ob2 .input (2 ,10);

ob2 . display () ; . :
ob2 . inputz () ; Note that ob2 calls its functions,

functions of ob1, and functions of Base.

ob2 . displayz () ;
ob2 . inputk () ;
ob2 . displayk (); }

Note: When a derived class is used as a base class for another derived class, any
protected member of the initial base class that is inherited (as public) by the
first derived class may also be inherited as protected again by a second
derived class. For example, the program above is correct, and derived2 does
indeed have access to x and y.

If, however, base were inherited as private, then all members of base would

become private members of derivedl, which means that they would not be

accessible by derived2. (However, x and y would still be accessible by derivedl.)

This situation is illustrated by the following program, which is in error (and won't

compile). The comments describe each error:

Example 2: // This program will not compile.
#include <iostream.h>

class base
{ protected: intx,y;
public:
voidset (inta,intb) {x=a; y=b;}
void show () {cout << x <<"" <<y <<"\n"; }

2
class derivedl : private base // Now, all elements of base are private in derivedl
{ intk;

public:
void setk() { k=x*y;} // OK, this is legal because x and y are private to derivedl
void showk() { cout << k <<™\n"; }

gl 31y L3z Balall e lae) Object-Oriented Programming 4:tsh 4xa i 34

};

Il Access to X, VY, set(), and show() not inherited.
class derived?2 : public derivedl
{ intm;
public:
void setm() { m =x -y ; } // Error, illegal because x and y are private to derivedl
void showm() { cout << m << "\n"; }

}g

main()

{ derivedl obl,;
derived2 ob2;
obl.set(1, 2); //error, can't use set()
obl1.show(); //error, can't use show()
ob2.set(3, 4); // error, can't use set()
ob2.show(); // error, can't use show()

}

Note: Even though base is inherited as private by derivedl, derivedl still has
access to base's public and protected elements.

Hierarchical Inheritance:

Many programming problems can be cast into a hierarchical where certain features of one
level are shared by many others below that level. The following figure shows a hierarchical
classification of students in a university.

Students

| Agt ‘ ‘ Engineerin | Medical

Hybrid Inheritance
There could be situations where we need to apply two or more types of inheritance
to design a program.

#include <iostream.h>

class student student
A
test sports

result

gl 31y L3z Balall e lae) Object-Oriented Programming 4:bs dsa i 35

{ protected: int r ;

public:
void get_number(inta)
{r=a; }

void put_number()
{cout <<"r ="<<r << endl ; }
b
class test : public student
{ protected : float sub1l;
float sub2;
public:
void get_marks(float x, float y)
{subl=x; sub2=y ; }
void put_marks()
{ cout << " Marks in subl
cout << " Marks in sub2

=" <<subl << endl ;
="<<sub2 << endl; }
b
class sports
{ protected: float score ;
public:
void getdata (float s)
{ score =s ; }
void putscore ()

{ cout << " sports " << score << endl ; }
I3
class result : public test , public sports
{ float total ;
public:
void display ()
{ total = subl + sub2 + score ;
put_number () ;
put_marks () ;
putscore () ;
cout << "total =" <<total << endl ; }
};
main ()
{ result std ;

std.get_number (111) ;
std.get_marks (75.0,59.5) ;
std.getdata (63.5) ;
std.display () ;

}

