

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

23

 emp . show () ;

}

Inheritance
It is an important aspect in OOP. One of the major advantages is the reusability of

code. The reuse of a class that has already tested, debugged and used many times can

save us the effort of developing and testing the same again. Shared properties are

defined only once, and reused as often as desired. The mechanism of deriving a new

class from an old is called inheritance.

The old class is referred as the base class (super class) and the new one that

inherits the properties of the base class is called the derived class (subclass).

The objects of a derived class contains all the members of the base except the

private data and functions of the base class.

A derived class can share selected properties (functions as well as data members)

of its base classes, but makes no changes to the definition of any of its base classes.

Types of Inheritance:
1- Single Inheritance.

2- Multiple Inheritance.

3- Multilevel Inheritance.

4- Hybrid Inheritance.

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

24

Single Inheritance
In this type, there is only one derived class and only one base class.

A derived class has direct access to both its own members and the public members

of the base class.

The general form of defining a single inheritance is:

 class derived class-name : access-specifier base-class-name

 {

 Member Data ;

 Member Functions ;

 }

Where :

access-specifier: is either (private , public , or protected). The default is private,

that is if no access specifier is present, the access is private.

Public Access-Specifier:

Using public means that all of the public members of the base class will become

public members of the derived class and are available to the member functions of

derived just as if they had been declared inside it.

However, derived's member functions do not have access to the private elements

of base. This is an important point. Even though derived class inherits base class,

it has access only to the public members of base. In this way, inheritance does not

circumvent (يكسر او يتحايل) the principles of encapsulation necessary to OOP.

Base Class Section Public derivation

Private Not inherited

 Protected Protected

 Public Public

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

25

Example 1: This example shows a single inheritance of one base class and one

derived class with public access specifier.

include <iostream.h>

class Base

{ int i , j ;

 public: void set (int x , int y)

 { i = x ;

 j = y ;}

 void view ()

 { cout << i << j ; }

};

class Derived : public Base

{ int z ;

 public: Derived (int a)

 { z = a ; }

 void viewD ()

 { cout << z ; }

} ;

main ()

{ Derived xd (4) ;

 xd . set (2 , 6) ; // set is known to Derived

 xd . view () ; // view is known to Derived

 xd . viewD () ;

}

Example 2: Write a program to use a base class "institute" with data (name and

emp_no) and functions for input and output. The base class has a derived

class "Department" with data (dept_name and tel_no) and functions for

input and output.

include <iostream.h>

class institute

{ private: char name [30] ;

 int emp_no ;

 public:

 void institute_input ()

 { cin >> name ;

 cin >> emp_no ; }

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

26

 void show ()

 { cout << name << "\n" ;

 cout << emp_no << "\n" ; }

};

class Department : public institute

{ private : char dept_name [20] ;

 int tel_no ;

 public :

 void read ()

 { cin >> dept_name ;

 cin >> tel_no ; }

 void depShow ()

 { cout << dept_name << "\n" ;

 cout << tel_no << "\n" ; }

};

main ()

{ Department D ;

 D . institute_input () ; // call to a function in class institute.

 D . read () ;

 D . show () ; // call to a function in class institute

 D . depShow () ;

}

Inheritance and protected Members
When a member of a class is declared as protected, that member is not accessible by

nonmember elements of the program. Access to a protected member is the same as

access to a private member—it can be accessed only by the members of its class.

If the base class is inherited as public, then the base class' protected members

become protected members of the derived class and are, therefore, accessible by the

derived class. By using protected, you can create class members that are private to

their class but that can still be inherited and accessed by a derived class (Making a

private Member inheritable).

Example 3:

#include <iostream.h>

class base

{ protected: int i, j; // private to base, but accessible by derived

 public:

 void set (int a , int b) { i = a ; j = b ; }

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

27

 void show () { cout << i << " " << j << "\n"; }

};

class derived : public base

{ int k;

 public: void setk() { k = i * j; } // derived may access base's i and j. If i and j declared as

// private in base, then derived would not have access to

 // them and the program would not compile.

 void showk() { cout << k << "\n"; } } ;

main()

{ derived ob ;

 ob.set (2 , 3) ; // OK, known to derived

 ob.show() ; // OK, known to derived

 ob.setk() ;

 ob.showk() ;

}

Example 4: Shows public inheritance and protected members. This example also use

the same functions' names in both base and derived class.

include <iostream.h>

const int size = 30 ;

class employee

{ protected: char name [size] ;

 int age ;

 char department [size] ;

 void initialize ()

 { cin >> name ;

 cin >> age ;

 cin >> department ;

 }

 void describe ()

 { cout << name << endl ;

 cout << age << endl ;

 cout << department ;

 }

};

class manager : public employee

{ protected : int level ;

 void initialize ()

 { employee :: initialize () ; // call to function initialize() in employee class

 cin >> level;

 }

 void describe ()

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

28

 { employee :: describe (); // call to function describe() in employee class

 cout << level ; }

};

main ()

{ manager aa;

 aa . initialize () ; // error, manager:: initialize () is not accessible. initialize() is protected

 aa . describe () ; // error, manager:: describe () is not accessible. describe () is protected

}

Note: there are two methods to avoid the above errors:

1- Write initialize() and describe() in public section to call them in main().

2- Write initialize() in protected section, Write describe() in public section and

call the function initialize() in the describe function.

H.W: Write the above program with modification to avoid the errors.

Note: In the above example, the scope resolution operator (::) tells the compiler that

this version of initialize() and describe() belong to the employee class (i.e.,

this initialize() and describe() are in employee's scope).

 In C++, several different classes can use the same function name. The

compiler knows which function belongs to which class because of the scope

resolution operator.

Private Access-Specifier:
When a access specifier is private, all public and protected members of the base

class become private members of the derived class.

Therefore, the public members of the base class can only be accessed by the

member functions of the derived class and cannot be accessed by parts of your

program that are not members of either the base or derived class.

Base Class Section Private derivation

Private Not inherited

 Protected Private

 Public Private

Example 1:

include <iostream.h>

class human

{ public : char name [30] ;

 int age ;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

29

 void getdata ()

 { cin >> name ;

 cin >> age ; }

 void putdata ()

 { cout << name << endl ;

 cout << age << endl ; }

} ;

class worker : private human

{ public : int grade ;

 void input ()

 { cin >> grade ; }

 void view ()

 { cout << grade ; }

} ;

main ()

{ worker W ;

 W. getdata () ; // error message('human::getdata' is not accessible)

 W. input () ;

 W. putdata () ; // error message('human::putdata' is not accessible)

 W. view () ;

}

Protected Access Specifier:
It is possible to inherit a base class as protected. When this is done, all public and

protected members of the base class become protected members of the derived class.

Base Class Section Protected derivation

Private Not inherited

 Protected Protected

 Public Protected

Example 1:

#include <iostream.h>

class base

{ protected: int i , j ; // private to base, but accessible by derived

 public:

 void setij (int a , int b) { i = a ; j = b ; }

 void showij () { cout << i << " " << j << "\n" ; }

 };

class derived : protected base // Inherit base as protected.

{ int k;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

30

 public:

 void setk() { setij (10, 12) ; k = i * j ; } // ok, access to setij , i ,and j

 void showall() { cout << k << " " ; showij (); } // ok

};

main()

{ derived ob;

 ob.setij(2 , 3) ; // illegal, setij() is protected member of derived

 ob.setk() ; // OK, public member of derived

 ob.showall() ; // OK, public member of derived

 ob.showij() ; // illegal, showij() is protected member of derived

}
As you can see by reading the comments, even though setij() and showij() are public

members of base, they become protected members of derived when it is inherited using

the protected access specifier. This means that they will not be accessible inside main().
The following table summarizes the visibilities of members and modifications on

them when they are inherited.

Base Class Section
Derived Class Visibility (derivation)

public private protected

Private Not inherited Not inherited Not inherited

Protected Protected private Protected

Public public private Protected

Note: In all cases, the private members are not inherited; therefore they never

become members of the derived class.

 :ملخص هام
ان يكون داخل من الممكنفالاست عاء public الاب كت classالابن أعضاء الت classاذا ورث الت -

 .()mainداخل دالة الت أوالابن classاح ى دوال الت

ال - من الاعضاء وراثة تم اذا كت classأما يكون فيجب privateاو protectedالاب ان

 . publicيجب الا يوج فيه سوى ال ()mainلان ال بن فقط داخل الاالاست عاء لتنك الاعضاء

Multiple Inheritances
In multiple inheritances, a class inherits the properties of two or more classes. They

allow us to combine the features of several existing classes as a starting point for

defining new classes.

The general form of a derived class with multiple base classes is as follow:

Class Derived-name : access-specifier Base-class1-name ,

 access-specifier Base-class2-name

{

 Member Data ;

 Member Functions ;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

31

Example:

include <iostream.h>

class Parent1

{ public : int x ;

 void display_x ()

 { cout << x ; }

} ;

class Parent2

{ public : int y ;

 void display_ y ()

 { cout << y ; }

} ;

class Derived : public Parent1 , public Parent2

{ public : void fillAB (int A , int B)

 { x = A ;

 y = B ; }

} ;

main ()

{ Derived N ;

 N . fillAB (3 , 10) ;

 N . display_x () ; // from Parent1 (Base)

 N . display_y () ; // from Parent1 (Base)

}

Multilevel Inheritance
The mechanism of deriving a class from another "derived class" is known as

multilevel inheritance.

If the class (A) serves as a base class for the derived class (B) which in turn serves as

a base class for the derived class (C), the class B is known as Intermediate Base

class since it provides a link for the derived class C.

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

32

The chain ABC is known as inheritance path.

The general form of multilevel inheritance is as follow:

Example 1:

include <iostream.h>

class Base

{ protected : int x , y ;

 public: void input (int a , int b)

 { x = a ;

 y = b ; }

 void display ()

 { cout << x << endl << y ; }

} ;

class Derived1 : public Base

{ private : z ;

 public : void inputz ()

 { z = x + y ; } //ok, use of x and y because they are inherited as protected

 void displayz ()

 { cout << "z = " ; }

} ;

class Derived2 : public Derived1

{ int k ;

 public : void inputk ()

 { k = x * y ; } //ok , x and y are inherited as protected

 void displayk ()

 class Base-class-name

 {

 …….

 } ;

class Derived-class-name1 : access-specifier Base-class-name

 {

 …….

 } ;

class Derived-class-name2 : access-specifier Derived-class-name1

 {

 …….

 } ;

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

33

 { cout << " k = " << k ; }

} ;

main ()

{ Derived1 ob1 ;

 Derived2 ob2 ;

 ob1 . input (3 , 7) ;

 ob1 . display () ;

 ob1 . inputz () ;

 ob1 . displayz () ;

 ob2 . input (2 , 10) ;

 ob2 . display () ;

 ob2 . inputz () ;

 ob2 . displayz () ;

 ob2 . inputk () ;

 ob2 . displayk () ; }

Note: When a derived class is used as a base class for another derived class, any

protected member of the initial base class that is inherited (as public) by the

first derived class may also be inherited as protected again by a second

derived class. For example, the program above is correct, and derived2 does

indeed have access to x and y.

If, however, base were inherited as private, then all members of base would

become private members of derived1, which means that they would not be

accessible by derived2. (However, x and y would still be accessible by derived1.)

This situation is illustrated by the following program, which is in error (and won't

compile). The comments describe each error:

Example 2: // This program will not compile.

#include <iostream.h>

class base

{ protected: int x , y ;

 public:

 void set (int a , int b) { x = a ; y = b ; }

 void show () { cout << x << " " << y << "\n"; }

};

class derived1 : private base // Now, all elements of base are private in derived1

{ int k ;

 public:

 void setk() { k = x * y ; } // OK, this is legal because x and y are private to derived1

 void showk() { cout << k << "\n"; }

Note that ob2 calls its functions,

functions of ob1, and functions of Base.

Note that ob1 calls its functions

and functions of Base.

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

34

};

// Access to x, y, set(), and show() not inherited.

class derived2 : public derived1

{ int m;

 public:

 void setm() { m = x – y ; } // Error, illegal because x and y are private to derived1

 void showm() { cout << m << "\n"; }

};

main()

{ derived1 ob1;

 derived2 ob2;

 ob1.set(1, 2); // error, can't use set()

 ob1.show(); // error, can't use show()

 ob2.set(3, 4); // error, can't use set()

 ob2.show(); // error, can't use show()

}

Note: Even though base is inherited as private by derived1, derived1 still has

access to base's public and protected elements.

Hierarchical Inheritance:
Many programming problems can be cast into a hierarchical where certain features of one

level are shared by many others below that level. The following figure shows a hierarchical

classification of students in a university.

Hybrid Inheritance
There could be situations where we need to apply two or more types of inheritance

to design a program.

#include <iostream.h>

class student

student

test sports

result

احـواثـق نج د. إعداد مدرس المادة : Object-Oriented Programming الكيانية البرمجة

35

{ protected: int r ;

 public:

 void get_number(int a)

 { r = a ; }

 void put_number()

 { cout << " r = " << r << endl ; }

};

class test : public student

{ protected : float sub1;

 float sub2;

 public:

 void get_marks(float x , float y)

 { sub1 = x ; sub2 = y ; }

 void put_marks()

 { cout << " Marks in sub1 = " << sub1 << endl ;

 cout << " Marks in sub2 = " << sub2 << endl; }

};

class sports

{ protected: float score ;

 public:

 void getdata (float s)

 { score = s ; }

 void putscore ()

 { cout << " sports " << score << endl ; }

};

class result : public test , public sports

{ float total ;

 public:

 void display ()

 { total = sub1 + sub2 + score ;

 put_number () ;

 put_marks () ;

 putscore () ;

 cout << " total = " << total << endl ; }

} ;

main ()

{ result std ;

 std.get_number (111) ;

 std.get_marks (75.0 , 59.5) ;

 std.getdata (63.5) ;

 std.display () ;

}

