Plant tissue culture techniques and sterilization

أ.م.د. محديل مكي المؤمن معاضرة 2

Sterilization

Killing or excluding microorganisms or their spores with heat, filters, chemicals or other sterilants

Tissue culture is an aseptic technique

Aseptic technique:

- Sterile
- Free of pathogenic microorganisms
- Free or freed from pathogenic microorganisms
- Free from the living germs of disease and fermentation
- Conditions established to exclude contaminants

Sterilization the growth of contam cause

- 1. Micro-organism contamination can over grow the plant culture resulting in culture death
- 2. Micro-organism contamination exhaust the nutrient media
- 3. Micro-organism can change in secondary metabolite structure or produce other compounds .

Source of contamination

The explant or culture ✓ The vessels ✓ The media ✓ The instruments ✓

The environment where handling is taking place \checkmark

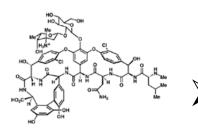
Aseptic Techniques

- ✓ Chemical treatments
- disinfectants,
- antibiotics,
- sublimat
- ✓ Physical treatments
- heating: the most important disinfection method
- electromagnetic radiation,
- filtration
- ultrasonic waves.

Disinfectans

- \checkmark They penetrate into bacteria,
- \checkmark They will denature bacterial protein,
- \checkmark They decrease the activity of bacterial enzyme,
- \checkmark They inhibit bacterial growth and metabolism,
- \checkmark They damage the structure of cell membrane,
- ✓ They change membrane permeability.

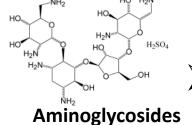
Disinfectans


- Liquid laundry bleach (NaOCl at 5-6% by vol)
- Rinse thoroughly after treatment
- Usually diluted 5-20% v/v in water; 10% is most common
- Calcium hypochlorite $Ca(OCl)_2$
- a powder; must be mixed up fresh each time
- Ethanol (EtOH)
- 95% used for disinfesting plant tissues
- Kills by dehydration
- Usually used at short time intervals (10 sec 1 min)
- 70% used to disinfest work surfaces, worker hands
- Isopropyl alcohol (rubbing alcohol) is sometimes recommended

Antibiotics


- ✓ Used only when necessary or when disinfestants are ineffective or impractical
- \checkmark Its use by incorporating in the media
- ✓ Common antibiotics are carbenicillin, cefotaxime, rifampicin, tetracycline, streptomycin
- ✓ Problems with antibiotics
 - tend to be selective
 - resistance acquisition
 - may obscure presence of microbes
 - cell/tissue growth inhibition

An ideal antibiotics


- ✓ Broad-spectrum
- \checkmark Did not induce resistance
- \checkmark Selective toxicity, low side effects
- ✓ Preserve normal microbial flora



vancomycin

 \triangleright

Modes of action

Inhibitors of cell wall synthesis. Penicillins, cephalosporin, bacitracin, carbapenems and vancomycin.

Inhibitors of Cell Membrane. Polyenes - Amphotericin B, nystatin, and condicidin.

Imidazole - Miconazole, ketoconazole and clotrimazole.

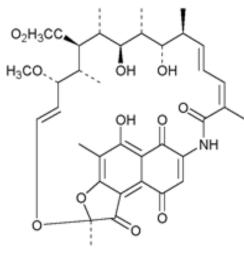
Polymixin E and B.

Inhibitors of Protein Synthesis.

Aminoglycosides - Streptomycin, gentamicin, neomycin and kanamycin. Tetracyclines - Chlortetracycline, oxytetracycline, doxycycline and minocycline. Erythromycin, lincomycin, chloramphenicol and clindamycin.

Modes of action

Inhibitors of metabolites (Antimetabolites).

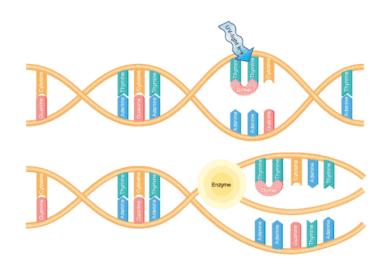

Sulfonamides - Sulfanilamide, sulfadiazine silver and sulfamethoxazole.

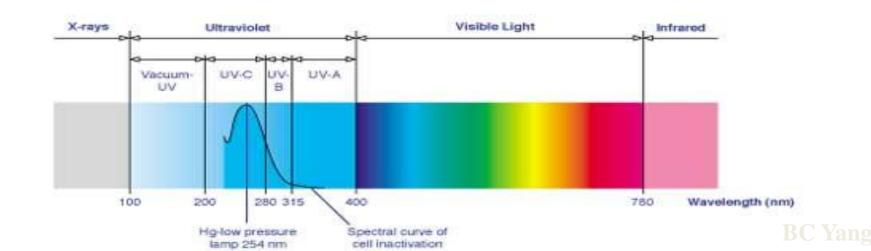
Trimethoprim, ethambutol, isoniazid.

Inhibitors of nucleic acids (DNA/RNA polymerase).

Quinolones - Nalidixic acid, norfloxacin and ciprofloxacin.

Rifamycin and flucytosine.


rifamycin


Sublimat (0.1 - 1%)

- \checkmark Its activity based on Cl⁻
- ✓ Heavy metal (Hg) denaturates proteins.
- ✓ Hg is toxic for the environment, therefore recuperate the Hg-solution after use and collect in a large container.
- ✓ Hg can be precipitated by adding ammonia to the solution, and siphoning the supernatant

UV radiation

- Ultraviolet is light with very high energy levels and a wavelength of 200-400 nm.
- One of the most effective wavelengths for disinfection is that of 254 nm.

Heating

• Oven (dry heat)

Suitable for tools, containers a 160°-180° C for 3 h

• Microwaves (off the shelf)

Useful for melting agar (but not gellan gum types of solidifying agents) Special pressurized containers are required for sterilizing in a microwave

• Flaming or heating of tools

Flaming – e.g., 95% EtOH in an alcohol burner is useful for sterilizing metal instruments

Bacticinerators – heats metal tools in a hot ceramic core

Heated glass beads

Heating

• Autoclave

Steam heat under pressure (It typically generates 15 lbs/in² and 250° F (1.1 kg/cm² and 121° C))

It is faster and more effective

For liquids (such as water, medium), autoclave time depends on liquid volume

Heating

• Flaming or heating of tools

Flaming – e.g., 95% EtOH in an alcohol burner is useful for sterilizing metal instruments

Bacticinerators – heats metal tools in a hot ceramic core Heated glass beads

Filtration

- Filtration of culture medium
 - Some medium ingredients are heat labile, e.g., GA, IAA, all proteins, antibiotics
 - Most devices use a paper cellulose filter with small pore spaces $(0.22 \ \mu m)$
 - Syringes used for small volumes, vacuum filtration for large volumes
- Filtration of air
 - Transfer hoods usu. generate wind at 27-30 linear m per min (or 90-100 ft per min)
 - Too slow and air drops contaminants onto your work surface; too fast causes turbulence and excess filter wear
 - air "corridors" must be kept free of barriers to be effective