الفصل الثاني

الحرارة والقانون الأول للثرموداينمك

يتناول هذا الفصل دراسة كيفية إيجاد كمية الحرارة التي تفقدها أو تكسبها المادة خلال عمليات التسخين أو التبريد أو خلال عمليات التحول في حالة المادة. ويضم هذا الفصل دراسة الحرارة النوعية للمواد وطرائق قياسها، كما يتضمن هذا الفصل القانون الأول للثرموداينمك وتطبيقاته.

الحرارة وتأثيراتها

إن عملية رفع درجة حرارة المادة يعني تزويدها بالطاقة الحرارية، اما عملية خفض درجة الحرارة المادة فتعني سحب مقدار من الطاقة الحرارية. ان كمية الطاقة التي يجب تجهيزها أو سحبها من المادة تعتمد على عدة عوامل منها:

- 1- كتلة المادة.
- 2- مقدار الارتفاع أو الانخفاض (مقدار التغير) في درجة حرارة المادة.
 - 3- الحرارة النوعية للمادة.

أما في عمليات الغليان والانصهار والتسامي التي تمر بها المواد، فان كمية من الطاقة الحرارية سوف تمتص من دون ان تسبب أية زيادة في درجة حرارة المادة. وفي حالة عمليات التكاثف والانجماد فان مقداراً من الطاقة الحرارية سوف يتحرر مع بقاء درجة حرارة المادة ثابتة.

ومن خلال دراسة عمليات التسخين والتبريد والعمليات التي تمر بها المادة كالغليان والانصهار والتكاثف والتسامي والانجماد يمكن استنتاج بعض النقاط المهمة:

- 1- تقوم الطاقة الحرارية المزودة للمادة بزيادة الطاقة الحركية أو الاهتزازية لذرات أو جزيئات المادة مما يؤدي الى رفع درجة حرارتها، والعكس صحيح. مع ملاحظة ان المادة تبقى محافظة على حالتها سوءا كانت صلبة أم سائلة أم غازية.
- 2- ان امتصاص أو تحرير الطاقة الحرارية خلال عمليات الغليان والانصهار والتسامي والتكاثف والانجماد لا يؤدي الى زيادة أو خفض درجة حرارة المادة، بل ان درجة الحرارة

تبقى ثابتة طيلة فترة عملية التحول في حالة المادة. ان الطاقة الحرارية التي تمتصها المادة تستخدم في تلين أو تكسر الأواصر التي تربط بين ذرات أو جزيئات المادة. ويحدث العكس عند تكوين وبناء هذه الأواصر.

كمية الحرارة (Q)

باستخدام قانون حفظ الطاقة يمكن تحديد كمية الحرارة (Q) التي تكتسبها أو تفقدها المادة وذلك باستخدام العلاقة الآتية:

كمية الحرارة المفقودة = كمية الحرارة المكتسبة

وهناك بعض النقاط المهمة التي يجب مراعاتها عند القيام بعميلة حساب كمية الحرارة المفقودة أو المكتسبة من قبل المادة في الحالات الأتية.

الحالة الأولى: حالة تغير درجة حرارة المادة

ان كمية الحرارة (Q) التي تكتسبها المادة أو تفقدها خلال عمليات التسخين أو التبريد لغرض رفع أو خفض درجة حرارتها فقط من دون حصول عملية تغير في حالة المادة تعطى بالعلاقة الأتية:

$$Q = mC \Delta T$$
(1)

تمثل كتلة المادة ، C تمثل الحرارة النوعية للمادة ، ΔT مقدار التغير في درجة حرارتها

الحالة الثانية: حالة تغير حالة المادة

ان كمية الحرارة (Q) التي يجب تزويدها للمادة خلال عمليات تحول حالة المادة كالغليان أو الانصهار أو التسامي أو الانجماد أو التكاثف من دون ان تسبب زيادة أو نقصان في درجة حرارة المادة تعطى بالعلاقة الآتية:

إذ ان: L تمثل الحرارة الكامنة للانصهار أو الانجماد أو التكاثف أو التسامي.

الحالة الثالثة: حالة تغير طبيعة أو تركيب المادة

وتشمل هذه الحالة حالات التغير المغناطيسية أو الكهربائية أو تغير ات تركيب المادة والتي تحدث عند تغير درجة حرارة المادة.

المكافىء الميكانيكي للحرارة (ل)

الحرارة هي شكل من إشكال الطاقة وتقاس بوحدة السعرة (calori) أو الكيلو سعرة (Kcalori). ويمكن تحويل الحرارة الى شغل ميكانيكي وبالعكس ومن تطبيقات تحويل الحرارة الى شغل الماكنة البخارية. ان عامل التحول بين الطاقة الحرارية والطاقة الميكانيكية يسمى بالمكافىء الميكانيكي (J). ومن التجارب المشهورة في قياس هذه الكمية تجربة العالم جول الذي أوجد العلاقة بين الشغل (W) والطاقة الحرارية (Q) وحسب المعادلة الآتية:

أي أن الطاقة الميكانيكية يمكن ان تتحول الى طاقة حرارية وبالعكس وان أفضل قيمة لمكافىء التحول (J) هي

1cal = 4.186 J

1 Kcal = 4186 J

الحرارة النوعية للمواد (C)

يطلق على السعة الحرارية النوعية بالحرارة النوعية وهي كمية الحرارة التي يجب ان تنساب الى أو من وحدة الكتلة من المادة لتغير درجة حرارتها بمقدار درجة واحدة. ويرمز لها بالرمز (C) ويعبر عنها رياضياً من خلال المعادلة الأتية:

$$C = \frac{\Delta Q}{m \Delta T} \qquad \dots (4)$$

إذ إن:

ر (Q Δ) تمثل كمية الحرارة التي تزود بها كتلة مقدارها (m) من المادة تتغير درجة حرارتها بمقدار (Δ Δ) درجة حرارية.

وتقاس الحرارة النوعية بوحدة (J / g.K)، أو (J / g.K)، أو (J / g.K)، أو (cal / g.K).

وتعتمد الحرارة النوعية للمادة اعتماداً كبيراً على درجة الحرارة، وعلية يجب ذكر درجة الحرارة عند اعطاء قيمة الحرارة النوعية لمادة ما. حيث ان الحرارة النوعية للماء عند درجة حرارة الغرفة تساوي تقريباً $(4.2 \times 10^3 \, \mathrm{J/Kg.K})$.

تتناقص السعة الحرارية والحرارة النوعية لجميع المواد بانخفاض درجة الحرارة وتصل الى قيمة الصفر عند درجة حرارة الصفر المطلق وتعرف السعة الحرارية على انها كمية الحرارة للازمة لرفع درجة حرارة مادة ما درجة حرارية واحدة وتقاس بوحدة (J/K).

وترتبط السعة الحرارية للمادة مع الحرارة النوعية لها بالعلاقة الآتية:

السعة الحرارية = الكتلة X الحرارة النوعية

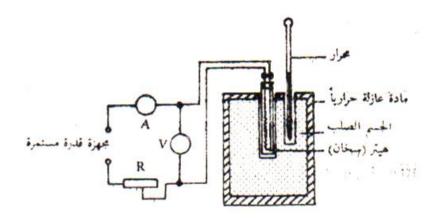
يمكن إيجاد كمية الحرارة (Q) التي يزود بها جسم ذات كتلة مقدارها (m) وحرارة نوعية T_2 لأجل رفع درجة حرارتها من T_1 الى T_2 وفق العلاقة الآتية:

$$Q = mC (T_2 - T_1)(5)$$

تستخدم هذه العلاقة ايضاً لإيجاد كمية الحرارة التي يحررها جسم كتلته m وحرارته النوعية T_1 عندما تنخفض درجة حرارته من T_2 الى T_3 .

قياس الحرارة النوعية

هناك عدة طرق لقياس الحرارة النوعية والتي تختلف فيما بينها باختلاف مديات درجات الحرارة الواطئة أو العالية جداً ومن هذه الطرق ما يأتى:


1- الطريقة الكهربائية لقياس الحرارة النوعية للمواد الصلبة

تستخدم هذه الطريقة لقياس الحرارة النوعية للمواد الصلبة الجيدة التوصيل للحرارة كالنحاس والألمنيوم. إذ تؤخذ قطعة منتظمة الشكل تحتوي على ثقب يثبت فيه سخان كهربائي (هيتر) ومجس حراري (ثرموميتر). تقاس كتلة المادة ودرجة حرارتها الابتدائية، ثم تحاط القطعة المعدنية بمادة عازلة كالصوف الطبيعي أو الاصطناعي أو البولستيرين ويمرر خلال السخان تيار كهربائي (I) مناسب وتحسب مدة مرور التيار باستخدام ساعة توقيت وتسجل ايضاً قراءات الفولتميتر (V) والأميتر (I). عندما ترتفع درجة الحرارة بمقدار مناسب عشر درجات مثلاً يوقف مرور التيار وساعة التوقيت في الوقت نفسه وتسجل أعلى قراءة يصلها المحرار. فإذا فرضنا ان الطاقة الحرارية المتسربة الى المحيط تساوى صفراً، فإن

الطاقة الكهربائية التي يزود بها السخان = الطاقة الحرارية التي تزود بها القطعة المعدنية $mC(T_2-T_1)=VIt$

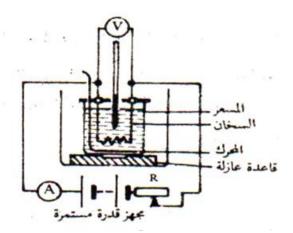
$$C = \frac{V I t}{m (T_2 - T_1)}$$
(6)

فإذا كانت قيمة التيار بالأمبير والفولتية بالفولت والزمن بالثانية ودرجة الحرارة بالدرجة الكلفنية والكتلة بالغرام فان وحدة الحرارة النوعية هي الجول لكل غرام لكل درجة كلفنية. الشكل (1) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد الصلبة.

الشكل (1) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد الصلبة.

2- الطريقة الكهريائية لقياس الحرارة النوعية للمواد السائلة

وهي تشبه الى حد كبير طريقة قياس الحرارة النوعية للمواد الصلبة حيث يستخدم وعاء معدني كمسعر حراري يوضع فيه السائل والسخان الكهربائي والمجس الحراري ، يحرك السائل باستمرار خلال فترة مرور التيار الكهربائي. حيث يتم إيجاد قيم كتلة السائل (m) وكتلة المسعر (m_c) ودرجة الحرارة الابتدائية (T_1) والنهائية (T_2) وقيم الفولتية (V) والتيار (I) والزمن (I). وهنا يجب ان تكون قيمة الحرارة النوعية للمسعر والمحرك معلومة، ويمكن استخدام المعادلة الآتية:


الطاقة التي يزود بها السخان=الطاقة التي اكتسبها السائل+الطاقة التي اكتسبها المسعر والمحرك

$$mC (T_2 - T_1) + m_c C_c (T_2 - T_1) = V I t$$

$$mC (T_2 - T_1) = V I t - m_c C_c (T_2 - T_1)$$

$$C = \frac{V I t - m_c C_c (T_2 - T_1)}{m (T_2 - T_1)}$$
(7)


والشكل (2) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد السائلة.

الشكل (2) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد السائلة

3- طريقة الخلط لإيجاد الحرارة النوعية للمواد الصلبة

في هذه الطريقة يتم إيجاد كتلة الجسم الصلب المراد إيجاد حرارته النوعية، ثم يعلق بخيط ويوضع في ماء يغلي لمدة معينة (عشر دقائق مثلاً)، إذ تصبح درجة حرارته (T_3) مساوية الى (m_c)، وبعدها ينقل بسرعة الى مسعر حراري كتلة (m_c) يحتوي على كمية من الماء كتلة (m_w) ودرجة حرارتهما (T_1)، يحرك الماء ونسجل اعلى درجة حرارة يصلها المحرار (T_2). عند فرض ان الجسم الصلب لم يفقد حرارة خلال نقلة الى المسعر فان

فإذا كانت الحرارة النوعية للجسم الصلب تساوي (C) والحرارة النوعية للماء (C_w) والحرارة النوعية للماء (C_w) فانه يمكن الحصول على المعادلة الآتية

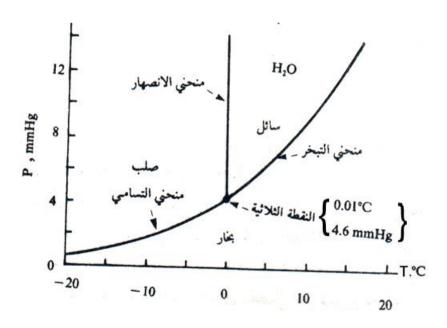
$$mC (T_3 - T_2) = m_w C_w (T_2 - T_1) + m_c C_c (T_2 - T_1)$$

$$mC (T_3 - T_2) = (m_w C_w + m_c C_c) (T_2 - T_1)$$

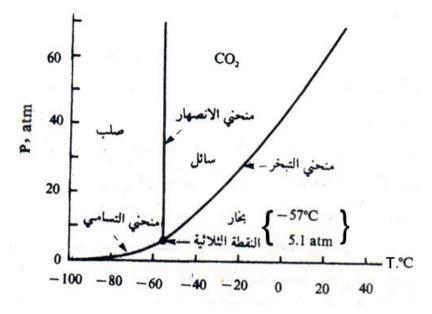
$$C = \frac{(m_w C_w + m_c C_c) (T_2 - T_1)}{m (T_2 - T_2)} \qquad(8)$$

4- طريقة الخلط لإيجاد الحرارة النوعية للمواد السائلة

وهي مشابهة الى الطريقة السابقة (3) حيث يتم اختيار الجسم الصلب بحيث تكون قيمة حرارته النوعية معروفة، وتستخدم المعادلات السابقة نفسها لإيجاد الحرارة النوعية للسائل.


وهناك طرق اخرى لقياس الحرارة النوعية للمواد مثل طريقة الجريان المستمر والطريقة الميكانيكية وطريقة التبريد.

النقطة الثلاثية للمادة Triple Point


يؤثر الضغط المسلط على تغير ات حالات المادة عندما تتغير درجة حرارتها. فنجد ان درجة حرارة غليان الماء تزداد بزيادة الضغط المسلط عليها الى ان تصل قيمة حرجة لها، بحيث لا يمكن فوقها ان تبقى المادة في حالة السيولة مهما از داد الضغط المسلط عليه. إن تغير درجة غليان المادة مع الضغط المسلط عليها يسمى بمنحني التبخر.

تعتمد درجة حرارة انصهار المواد الصلبة على الضغط المسلط عليها (ولكن بدرجة اقل مما هي علية لدرجة حرارة الغليان). ان تغير درجة حرارة انصهار الثلج مع الضغط المسلط عليه يسمى بمنحني الانصهار. وقد وجد بان درجة حرارة انصهار الثلج تقل بزيادة الضغط المسلط عليه، على عكس معظم المواد الأخرى والتي تزداد درجة حرارة انصهار ها بزيادة الضغط المسلط

عليه. وهذا يعني انه يمكن صهر الثلج بطريقتين: بزيادة الضغط المسلط عليه أو بتسخينه. وقد استغلت هذه الخاصية للثلج في عمليات التزلج عليه، إذ تتكون طبقة من الماء بسبب ضغط المتزلج تساعد على التزلج على الجليد.

الشكل (3) النقطة الثلاثية للماء

الشكل (4) النقطة الثلاثية لثنائى اوكسيد الكاربون

تحولات حالة المادة

يطلق على العمليات التي تتغير فيها حالة المادة بعملية التغير في الطور، فمثلاً يحدث تغير في طور المادة المعدنية عند انصهارها وكذلك يحدث تغير في طور السائل عند غليانه وتحوله الى الحالة الغازية (طور البخار). ولكي يحدث التغير في الطور يجب اضافة الحرارة، ولكن على الرغم من اضافة الحرارة الى المادة فان درجة حرارتها لا ترتفع وهذا يعني ان الطاقة الداخلية للمادة هي التي تتغير عندما تتحول المادة من طور الى آخر. ومثال على ذلك الطاقة الداخلية لجزيئات الماء في الثلج هي أقل من الطاقة الداخلية لها في الماء السائل، وتكون الطاقة الداخلية لجزيئات الماء في بخار الماء اكبر من طاقتها الداخلية بعد ان تتكثف وتصبح سائلاً.

وهناك تحولات من نوع آخر تحدث داخل المادة وتغير من خواصها الفيزيائية أو الكيميائية كالتحولات المغناطيسية والكهربائية وتركيب المادة. يحدث هذا النوع من تغيرات الطور نتيجة لتسخين أو تبريد المادة الى درجة حرارة حرجة. ان هذه التحولات تكون مصحوبة بامتصاص أو تحرير كمية من الطاقة الحرارية فضلاً عن تغيرات خواص المادة. سنتناول بعض حالات تغير المادة كالتبخر والغليان والانصهار والانجماد وغيرها.

التبخر Evaporation

يمكن ان تعرف الحرارة الكامنة للتبخر على انها كمية الحرارة اللازمة (الطاقة اللازمة) لفصل وحدة الكتلة من جزيئات السائل عن بعضها البعض وتحويلها من طور السيولة الى طور الغاز (البخار) تحت ضغط ثابت ودرجة حرارة ثابتة. وهناك حقيقة اخرى وهي ان نفس كمية الحرارة سوف تنطلق (تتحرر) عندما يتكاثف البخار، أي عندما تتحول جزيئات الغاز (البخار) من طور الغاز (البخار) الى طور السيولة.

اما من ناحية علاقة الحرارة الكامنة للتبخير مع درجة الحرارة فان الحرارة الكامنة تتغير عكسياً مع تغير درجة الحرارة، أي انها تقل كلما ارتفعت درجة حرارة السائل ويعود ذلك الى كون جزيئات السائل تكون اقل ترابطاً مع بعضها عند درجات الحرارة العالية عنها عند درجات الحرارة المنخفضة. ومثال ذلك الحرارة اللازمة لتبخير الماء عند درجة حرارة 300° 00 تساوي 300° 00 تساوي 300° 00 عند درجة حرارة 300° 00 وغالباً ما تعطى الحرارة الكامنة للتبخير عند درجة غليان السائل العادية، والجدول (2) يبين بعض قيم الحرارة النوعية للتبخير لبعض المواد.

جدول (2) قيم الكامنة لتبخر بعض السوائل

المادة	حرارة التبخير cal/g	
الماء		539
النيتروجين		48
الإوكسمجين		51
كحول اثيلي (ايثانول)		204
الزئبق		71
الزنك		475
الرصاص		175
حامض الكبريتيك		122

إن معظم الحرارة الكامنة للتبخير تصرف للتغلب على قوة التجاذب الكبيرة لجزيئات المادة في حالة السيولة وبصرف جزء قليل منها كشغل خلال عملية التمدد ضد الضغط المسلط على السائل (كالضغط الجوي).

اما وحدات قياس الحرارة الكامنة للتبخر فهي cal/g أو cal/g وفي نظام الوحدات العالمي J/Kg فيستخدم وحدة J/Kg.

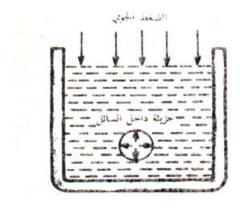
اذا وضع سائل في وعاء مغلق مفرغ من الهواء، فان جزيئات السائل سوف تتبخر الى الفراغ الموجود فوق سطح السائل، كما وتعود بعض جزئيات البخار وتصطدم بسطح السائل وتعود اليه، وتستمر هذه العملية الى ان تحصل حالة التوازن، وهي الحالة التي تتساوى فيها عدد الجزيئات التي تترك السائل في زمن معين مع الجزيئات التي تعود اليه من البخار في نفس الزمن. وهذا يعني ان عدد جزيئات البخار ستبقى ثابتة عند حد معين بشرط عدم تغير درجة حرارة النظام، ويقال عندئذ بان البخار مشبعاً تحت هذه الظروف. ويطلق على ضغط الجزيئات في البخار تحت هذه الشروط بضغط البخار للسائل، الذي يزداد بارتفاع درجة الحرارة ويقل بانخفاضها. مثال هذه الشروط بخار الماء 21.1 و 49.4 و 760 ملم زئبق عند درجة حرارة 10 و60 و 10 درجة سليزية على التوالي.

ملاحظة 1ملم زئبق يساوي 1تور (1mm Hg = 1Torr). الشكل (5) يوضح حالة البخار المشبع.

الشكل (5) يوضح حالة البخار المشبع

Melting الانصهار

تعرف الحرارة الكامنة لانصهار على انها كمية الحرارة اللازمة لتحول وحدة الكتلة من المادة من الحالة الصلبة الى الحالة السائلة تحت درجة حرارة ثابتة وضغط ثابت. والجدول (3) يبين قيم الحرارة الكامنة لانصهار بعض المواد الصلبة. وبما ان الطاقة الداخلية للمادة في حالتها السائلة اعلى بكثير من طاقتها الداخلية في حالتها الصلبة، فان المادة عند تحويلها من الحالة الصلبة الى الحالة السائلة تحتاج الى تزويدها بالطاقة الحرارية مثلاً.


ان وحدة قياس الحرارة الكامنة للانصهار هي cal/g. اما في نظام (SI) فانها تساوي (J/Kg). ان الحرارة الكامنة لانصهار الجليد في درجة حرارة 0°C هي 80 cal/g تحت الضغط الجوي الاعتيادي. ان الطاقة المجهزة للجسم الصلب تعمل على مساعدة الجزيئات على التغلب على القوى التي تربطها مع الجزيئات الأخرى في التركيب الصلب وجعلها تتحرك بحرية اكبر. تبدأ المادة الصلبة عند تسخينها بالانصهار عند درجة حرارة معينة. وعند تسخين خليط المادة الصلبة مع السائل تبقى درجة حرارة الخليط ثابتة الى ان يكتمل انصهار المادة الصلبة. ولكل مادة درجة حرارة انصهار معينة. وتحرر نفس الكمية من الحرارة من المادة عند تحويلها من الحالة السائلة الى الحالة الصلبة عند نفس درجة الحرارة والضغط الجوي. تمتص الحرارة الكامنة لعرق الجسم من الجسم عند التعرق لكى يتبخر العرق وبذلك يتم تبريد الجسم.

الغليان Boiling

تنشأ ظاهرة الغليان عندما تكتسب مجموعة من الجزيئات في داخل السائل طاقة تكفي لفصلها عن بقية الجزيئات وتكوين فقاعة صغيرة. ان ضغط البخار داخل الفقاعة يعتمد على درجة الحرارة، فإذا كانت درجة الحرارة أقل من درجة غليان السائل، فان الضغط الجوي المسلط على السائل يكون اكبر من ضغط البخار داخل الفقاعة. وبناء على ذلك فان الفقاعة سوف تتلاشى تدريجياً قبل ان تجد الفرصة للنمو والوصول الى سطح السائل. وعندما ترتفع درجة الحرارة (كما في حالة تسخين السائل) يرتفع معها ضغط بخار السائل داخل الفقاعات وسوف يصل الى درجة حرارة معينة يتساوى عندها الضغط الجوى مع ضغط البخار داخل الفقاعة، وعندها سوف تنمو

الفقاعة ويزداد حجمها كلما ارتفعت نحو سطح السائل (بدلاً من التلاشي والاختفاء) وبتكرار حدوث هذه الظاهرة في اماكن متفرقة كثيرة داخل السائل تنشأ ظاهرة الغليان. والشكل (6) يوضح ظاهرة الغليان.

وتعرف درجة الغليان على انها الدرجة الحرارية التي يتساوى عندها ضغط بخار السائل داخل الفقاعة مع الضغط الخارجي المسلط على السائل. ان انخفاض الضغط المسلط على السائل يوتاج الى يؤدي الى انخفاض درجة غليان السائل و العكس صحيح. ان عملية هروب بخار السائل يوتاج الى طقة عالية تكتسبها من جزيئات السائل الأخرى. ان الاستمرار في الغليان يوتاج الى امداد السائل بالحرارة. ولن ترتفع درجة حرارة السائل اعلى من درجة حرارة الغليان مهما كانت كمية الحرارة التي يزود بها السائل خلال عملية الغليان. تتكون الفقاعة بسهولة اكبر اذا كان السائل يحتوي على الشوائب كدقائق الغبار أو فقاعات الهواء، ومن الممكن ان يسخن السائل النقي الى اعلى من درجة غليانه من دون تكون الفقاعات، ولكن عندما يبدأ تكوين الفقاعات فانه يحدث بشدة كبيرة تقرب من الانفجار. تعطى درجة الغليان (في الغالب) لمختلف السوائل تحت الضغط الجوي القياسي اي المواء، ومن الماء تساوي 100°C أو (1atm). ان درجة حرارة غليان الماء تساوي 539cal/g المدن الواقعة في الجبال تكون اقل من 100°C. وذلك بسبب ان الضغط الجوي يقل كلما ارتفعنا عن سطح البحر. وهذا يفسر لنا اهمية استخدام قدور الضغط في عمليات الطهو.

الشكل (6) يوضح ظاهرة الغليان

التسامي The Sublimation

لا يمكن ان تبقى المادة في حالتها السائلة تحت ضغط اقل من ضغط نقطتها الثلاثية، يسمى منحني الضغط - درجة الحرارة الفاصل بين الحالة الصلبة وحالة البخار بمنحني التسامي، لانه يمثل الظروف المناسبة لجزيئات الحالة الصلبة للتبخر مباشرة دون المرور بالحالة السائلة بالعكس. ان اضافة الحرارة الى الثلج تحت الضغط الجوي الاعتيادي يسبب انصهار الثلج، اي الانتقال من الحالة الصلبة الى الحالة السائلة والسبب في ذلك يعود الى ان ضغط النقطة الثلاثية للماء اقل بكثير من الضغط الجوي الاعتيادي. بينما اضافة الحرارة الى صلب ثنائي اوكسيد الكاربون تسبب حالة التسامي أي الانتقال من الحالة الصلبة الى الحالة البخارية لان ضغط النقطة الثلاثية لثنائي اوكسيد الكاربون اعلى بكثير من الضغط الجوي الاعتيادي.

القانون الأول في الثرموداينمك

لو تصورنا أن حجماً معيناً من غاز (V_1) في درجة حرارة (T_1) وتحت ضغط (P_1) موجود في وعاء ذي مكبس، فإذا ضغط الغاز الى حجم (V_2) وانخفضت درجة حرارته الى (T_2) فان الضغط سيز داد الى (P_2) . ان الانتقال من الحالة الأولى (T_1, V_1, P_1) الى الحالة الجديدة (P_2) الن الحديدة (P_2) يمكن ان يتم بعدة طرق منها زيادة الضغط ثم خفض درجة الحرارة او خفض درجة الحرارة اولاً ثم زيادة الضغط المسلط على الغاز ثانياً. ان كبس الغاز يتطلب انجاز شغل، كما وان تبريد الغاز يتطلب سحب كمية من الحرارة منه. ان عملية انجاز الشغل وسحب كمية من الحرارة سوف يغير من الطاقة الداخلية للغاز. ان العلاقة بين الكميات الثلاثة، الشغل المنجز (P_1) هي كما يأتي الحرارة (P_2) والتغير في الطاقة الداخلية (P_1) هي كما يأتي

$$\Delta U = \Delta Q - \Delta W \qquad \dots (9)$$

إن إشارة Q تكون موجبة اذا اضيفت الحرارة الى الغاز وسالبة اذا سحبت منه الحرارة. واشارة W تكون موجبة اذا انجز الغاز شغلاً وسالبة اذا انجز الشغل على الغاز، ومهما كانت ترتيب العمليات التي يتعرض لها الغاز لجلبة من الحالة الابتدائية (T_1, V_1, P_1) الى الحالة

النهائية (V_2, V_2, V_2) فإن صافي التغير في الطاقة الداخلية U هو دائماً نفسه. أي ان كلاً من U و U يكون ثابتاً. وهذا هو جو هر القانون U من U و U يكون ثابتاً. وهذا هو جو هر القانون الأول للثر مو داينمك. و الذي يعني ان الطاقة تكون دائماً محفوظة، أي لا يمكن استحداثها او أفنائها، ولكنه يمكن تحويلها من شكل الى آخر.

ان مقدار التغير في Δ ل يمكن ان يكون صفراً في حالة التمدد الحر للغاز الذي يكون فيه Δ و Δ تساويان صفر. وهذا يعني ان تغير الحجم لا يغير الطاقة، أي ان طاقة الغاز ليس دالة لحجمه. بل ان الطاقة دالة لدرجة الحرارة فقط.

تطبيقات على القانون الأول

ينطبق القانون الأول للثرموداينمك على جميع الأنظمة مهما كانت معقدة. ومن الأنظمة المألوفة لنا هو جسم الإنسان الذي يفقد طاقة داخلية باستمرار، اذ تفقد معظم هذه الطاقة على شكل حرارة يفقدها الجسم الى المحيط ويمثل الشغل الذي يبذله الجسم جزءاً من هذه الطاقة. وبناءً على ما تقدم يمكن صياغة القانون الأول ليناسب الجسم كما يأتي

الشغل المبذول + الحرارة المفقودة = النقص في الطاقة الداخلية

يمكن حساب الشغل الذي ينجزه نظام يتمدد ضد محيطه ويبقى فيها الضغط ثابتاً بينما يتغير الحجم من V_i من العلاقة الآتية.

$$W = \int_{V_i}^{V_f} P dV$$

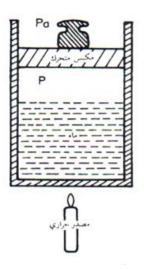
$$W = P \int_{V_i}^{V_f} dV$$

$$W = P(V_f - V_i)$$
.....(10)

وتسمى هذه العملية بالعملية الثابتة الضغط (Isobaric Process) وتعرف بأنها العملية التي تحدث للنظام بحيث يبقى الضغط المؤثر علية ثابتاً.

يبين الشكل رقم (7) عملية ثابتة الضغط وتتكون من كمية من الماء محصورة في وعاء اسطواني مجهز بمكبس حر الحركة وفوقه ثقل معين. يمكن تزويد الماء بالطاقة الحرارية وذلك بتسخينه الى ان يتحول جزء من الماء الى بخار ويتمدد النظام (الماء والبخار) ويحرك المكبس، أي ينجز شغلاً ضد المكبس. فإذا تحولت كتلة مقدار ها (m) من الماء الى بخار واز داد حجمها من أي ينجز شغلاً ضد المكبس. فإذا تحولت كتلة مقدار ها (m) من الماء الى بخار واز داد حجمها من V_f الى V_f وكان الضغط ودرجة الحرارة ثابتين فان الشغل المنجز خلال هذه العملية يعطى بالعلاقة الآتية :

$$W = P(V_f - V_i)$$


إن تحول السائل الى بخار يحتاج الى كمية من الحرارة (Q) تعطى بالعلاقة الآتية: Q = mL

حيث أن L تمثل الحرارة الكامنة للتبخر.

ان هذه الحرارة ستؤدي الى تغير في الطاقة الداخلية للنظام تعطى بالعلاقة الآتية:

حيث أن U_1 و U_2 تمثلان الطاقة الداخلية للسائل والبخار على التوالي. وعند تطبيق القانون الأول للثر موداينمك على هذه العملية نحصل على الصيغة الآتية :

$$Q = P(V_f - V_i) + (U_2 - U_1) \qquad(12)$$

الشكل (7) يوضح عملية ثابتة الضغط

وهناك تطبيقات أخرى على القانون الأول للثرموداينمك منها: العملية الأدياباتيكية والعملية تحت حجم ثابت والتمدد الحر والعملية عند درجة حرارة ثابتة.

Adiabatic Process الغملية الأدياباتيكية

العملية الأدياباتيكية هي العملية التي تحدث للنظام، بحيث لا تدخله ولا تخرج منه حرارة. ويمكن ان يتم ذلك إما:

- 1- بإحاطة النظام بمادة عازلة حرارياً (كالفلين).
- 2- بالقيام بالعملية بسرعة كبيرة بحيث نضمن عدم انتقال حرارة من النظام او إليه. وذلك لان انتقال الحرارة عملية بطيئة نسبياً، وبتطبيق القانون الأول للثرموداينمك على هذه العملية نحصل على:

ومن هنا نرى انه في العملية الأدياباتيكية يكون التغير في طاقة النظام الداخلية مساوياً للقيمة المطلقة للشغل. فإذا كان الشغل سالباً، كما هي الحال عندما يضغط النظام، فان (U_2) اكبر من (U_1) وبذلك فان الطاقة الداخلية للنظام تزداد. أما عندما يكون الشغل موجباً، كما هي الحال عند تمدد النظام، فان (U_2) اقل من (U_1) وبذلك فان الطاقة الداخلية للنظام تقل. والجدير بالذكر ان

زيادة الطاقة الداخلية للنظام يصاحبها عادة ارتفاع في درجة حرارة النظام. أما عند انخفاض الطاقة الداخلية للنظام فإن ذلك يصاحبه عادة انخفاض في درجة حرارته.

والأمثلة على العملية الأدياباتيكية كثيرة فانضغاط مزيج البنزين والهواء في آلة الاحتراق الداخلي (في شوط الانضغاط) هو عملية أدياباتيكية. وفي هذه الحالة ترتفع درجة حرارة النظام (مزيج البنزين والهواء). كذلك تمدد نواتج الاحتراق (في شوط القوة) هو عملية أدياباتيكية، ولكن في هذه الحالة تنخفض درجة الحرارة.

العملية تحت حجم ثابت Isochoric Process

ان هذه العملية تحدث للنظام مع بقاء حجمه ثابتاً. فإذا سخنا إناء غير قابل للتمدد ويحوي مادة ما كغاز مثلاً، فإن هذه العملية الشغل يساوي صفراً، لان الحجم لم يتغير وبذلك فإن القانون الأول للثرموداينمك يكون بالشكل التالي:

إن معنى ذلك ان الحرارة التي تعطى للنظام تذهب كلها في زيادة الطاقة الداخلية للنظام. ويمكن اعتبار أن الزيادة المفاجئة في درجة الحرارة والضغط المصاحبين لانفجار مزيج البنزين والهواء في آلة الاحتراق الداخلي ناجمة عن عملية تحت حجم ثابت.

التمدد الحر Free Expansion

يمكن توضيح التمدد الحركما يلي، فإذا تصورنا انه لدينا وعاء بجدران صلبة ومغطاة بعازل حراري، ولنفترض أننا قسمنا الوعاء الى قسمين بحاجز رقيق، بحيث ان احد القسمين يحتوي غازاً والآخر مفرغ من أي مادة. ثم لنفترض ان الحاجز الرقيق انكسر في هذه الحالة يبدأ الغاز بالتدفق من أحد القسمين إلى الآخر ويحدث له ما يسمى بالتمدد الحر وحيث ان الوعاء معزول حرارياً فإن هذه العملية هي أدياباتيكية، وبذلك فإن Q = 0. وحيث ان جدر ان الوعاء صلبة

فأنة لا يبذل شغل خارجي على النظام، وبذلك (Δ 0 0 0 وبتطبيق القانون الأول للثر موداينمك نحصل على

$$\Delta U = 0$$

وبذلك نستنتج انه في التمدد الحر فان الطاقة الداخلية الابتدائية تساوي الطاقة الداخلة النهائية، ويجب الانتباة ان التمدد الحر ليس له قيمة عملية وذلك لصعوبة الحصول عليه.

العملية عند درجة حرارة ثابتة Isothermal Process

في هذه العملية تتغير حالة النظام دون ان تتغير درجة حرارته، أي أن

$$U_2 = U_1$$

وعلية فعند تطبيق القانون الأول للثرموداينمك نحصل على

إن معنى ذلك ان الحرارة المعطاة تتحول كلها بالكامل الى شغل، أو ان الشغل المعطى يتحول كله الى حرارة.

وكمثال على هذه العملية نتصور اسطوانة غير معزولة حرارياً بداخلها مكبس، وبداخل الاسطوانة كمية من الهواء، ونتصور ان الاسطوانة موضوعة في حمام مائي عند درجة حرارة معينة. فإذا تحرك المكبس داخل الاسطوانة أنجز شغلاً على النظام يتحول كله كاملاً الى حرارة.

مسائل

س1: إذا كان معدل انسياب سائل خلال مسعر الانسياب المستمر تساوي 15g/s وان السخان الكهربائي يقوم بتزويد قدرة مقدارها 200 W. تحت هذه الظروف تم الحصول على فرق في درجة الحرارة مقدارها 3° C، ولأجل الحصول على نفس الفرق في درجات الحرارة تحت معدل انسياب مقداره 5g/s يجب تبديد قدره مقدارها 80 W. جد الحرارة النوعية للسائل ومعدل فقدان الحرارة إلى المحيط. افرض أن درجة حرارة المحيط هي نفسها في الحالتين.

الحل:

1W = 1J/s

 $80~{
m J/s}=100~{
m J/s}$ الطاقة الكهر بائية للحالة الأولى $100~{
m J/s}=100~{
m J/s}$

Q=m C ΔT كمية الحرارة المكتسبة بواسطة الماء في الثانية الواحدة تساوي $\Delta T=T_2-T_1=3~^{o}C~=3K$

H = 1نفرض أن معدل فقدان الحرارة إلى المحيط خلال الثانية الواحدة

كمية الحرارة المكتسبة = كمية الحرارة المفقودة

 $200 \text{ J/s} = (15 \times 10^{-3} \text{ Kg/s}) \times C \times (3 \text{K}) + H$

في الحالة الأولى

 $80 \text{ J/s} = (5 \times 10^{-3} \text{ Kg/s}) \times C \times (3 \text{ K}) + H$

في الحالة الثانية

وبطرح الحالة الثانية من الحالة الأولى نجد

$$(200 - 80) \text{ J/s} = (15 - 5) \times 10^{-3} \text{ Kg/s} \times \text{C} \times (3\text{K})$$

 $120 \text{ J/s} = 30 \text{ x } 10^{-3} \text{ Kg/s x C}$

$$C = \frac{120 \text{ J/s}}{30 \text{ x} 10^{-3} \text{Kg.K/s}} = 4 \text{ x} 10^{3} \text{J/Kg.K}$$

بالتعويض عن C في الحالة الأولى أو الثانية نجد أن

 $200 \text{ J/s} = (15 \times 10^{-3} \text{ Kg/s}) (4 \times 10^{3} \text{ J/ Kg.K}) (3 \text{K}) + \text{H}$

$$200 \text{ J/s} = 180 \text{ J/s} + \text{H} \rightarrow \text{H} = 200 \text{ J/s} - 180 \text{ J/s} \rightarrow \text{H} = 20 \text{ J/s}$$

سك: سخنت قطعة من النحاس كتلتها g 100 إلى درجة حرارة 100° C، ونقلت إلى مسعر من النحاس جيد العزل كتلته g 50 يحتوي على g 200 من الماء عند درجة حرارة g 300 مسعر من النحاس جيد العزل كتلته g 50 يحتوي على g 4 g 4 g 50 من الماء عند درجة حرارة الماء مع العلم إن الحرارة النوعية للنحاس تساوي g 4 g 4 g 4 g 6 للماء تساوي g 4 g 6 المحيط. g 6 المحيط وللماء تساوي g 6 المحيط g 6 المحيط ويقدان في درجة الحرارة إلى المحيط.

$$T_2 = 1$$
الحل:- نفرض ان درجة الحرارة النهائية

$$(100 - T_2)$$
 °C = مقدار التغير في درجة حرارة قطعة النحاس

$$(T_2 - 10)$$
 °C = مقدار التغير في درجة حرارة الماء والمسعر

$$Q = m C \Delta T$$

كمية الحرارة التي فقدتها قطعة النحاس

$$Q = (100 \times 10^{-3} \text{ Kg}) \times (4 \times 10^{2} \text{ J/Kg.K}) \times (100 - \text{T}_{2}) = 40 (100 - \text{T}_{2})$$

$$Q = m C \Delta T$$

كمية الحرارة التي اكتسبها المسعر النحاس

$$Q = (50 \times 10^{-3} \text{ Kg}) \times (4 \times 10^{2} \text{ J/Kg.K}) \times (T_2 - 10) = 20 (T_2 - 10)$$

$$Q = m C \Delta T$$

كمية الحرارة التي اكتسبها الماء

$$Q = (200 \times 10^{-3} \text{ Kg}) \times (4.2 \times 10^{3} \text{ J/Kg.K}) \times (T_2 - 10) = 840 (T_2 - 10)$$

كمية الحرارة المكتسبة = كمية الحرارة المفقودة

$$40(100 - T_2) = 20(T_2-10) + 840(T_2-10)$$

$$4000 - 40 T_2 = (20 + 840) (T_2-10)$$

$$4000 - 40 T_2 = 860 T_2 - 8600$$

$$4000 + 8600 = 860 T_2 + 40 T_2$$

 $12600 = 900 T_2$
 $T_2 = 14 \, {}^{\circ}\text{C}$

1g عن الماء المقطر يتحول إلى بخار التغير في الطاقة الداخلية لنظام يتكون من 1g من الماء المقطر يتحول إلى بخار تحت الضغط الجوي الاعتيادي في درجة حرارة 100° . وكان 1cm3 من الماء المقطر يشغل 167 cm3 في حالة البخار تحت نفس الضغط. وإن الحرارة الكامنة للتبخر تساوي 167 cm3

Q = mL

$$Q = 1g \times 540 \text{ cal/g} \rightarrow Q = 540 \text{ cal}$$

$$W = P(V_f - V_i)$$

$$W = 1.01 \text{ x } 10^5 \text{ N/ m}^2 (1671 - 1) \text{ x } 10^{-6} \text{ m}^3$$

W = 168.67 Joule

$$=\frac{168.76}{4.186}$$
 = 40.293 cal

و عليه فان الزيادة في الطاقة الداخلية للنظام تكون مساوية إلى ΔU ، أي أن

$$\Delta U = U_2 - U_1 = Q - P(V_f - V_i)$$

$$\Delta U = 540 \text{ cal } - 40.293 \text{ cal}$$

$$\Delta U = 499.707 \text{ cal}$$