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Chapter One : Groups Theory
sl ki s Y Jadl)

Definition 1.1: Binary Operations

Let A be a non empty set. A binary operation on a set A 1s a function from A X A
into A. (i.e.)

*: A X A — A is a binary operation iff

(1) axbe€AVa,b €A (Closure)

(2) Ifa,b,c,d € A suchthata = cand b = d, then a * b = ¢ * d (well-define).

Example 1.2:
(1) The operations {+, —, X}arebinary operationsonR,Z,Q,C.
But " — " is not binary operation on N.

(2) The operations {+, —} are not binary operations on O (odd number).
(3) The operation = is abinary operation on  R\{0}, Q\{0}, C\{0}.

Example 1.3:
Letaxb=a+ b+ 2,Va,b € Z*.Is * a binary operation on Z*?
Solution:

ezt
(1) Closure: Leta,b € Z*,thena * b —a+b+2€z.
(2) well-define : Let a,b,c,d € A suchthata =cand b = d,
thena*b=a+b+2=c+d+2=c*d
= * is a binary operation on Z ™.

Example 1.4:

Leta*b = aP,a,b € Z. Is * is a binary operation on Z.
Solution:

1) Closure:ifa=3andb=—1.Thena*b=3'1=§¢Z

= * 1is not a binary operation on Z.

Remark 1.5: Some time we used the symbols *, ,,#,0,...to denote a binary

operation.
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Exercises (1): which of the following are binary operations?
[1] axb=a+b,Va,b € R\{0}.
2] a@bz%,‘v’a,bEZ.

[3] a#b=a+b—3,Va,bEN.
[4] a,b=a+2b—5,Va,b €ER.

a Cc

51 5 5=3aV 3 7€ Q\0}:

Definition 1.6: (Commutative)
A binary operation * on a set 4 is called a commutative if and only if
axb=b+xa V a,b€A.

Definition 1.7: (Associative)

A binary operation * on a set A is called an associative if
(axb)xc=ax(bxc) V a,b,c€EA.

Example 1.8: Let R be a set of real numbers and * be a binary operation on R

definedasa * b = a+ b — ab . Is * commutative and associative.

Solution:

Leta,b € R, then

ax*b=a+b—ab=b+a—-—ba=bx*a

Which implies that * is commutative.

Leta,b,c € R, then

(as*b)xc=(a+b—ab)x*c
=(a+b—ab)+c—(a+b—ab)c
=a+b+c—ab—ac—bc+abc..........(1)

ax(bxc)=ax(b+c—bc)
=a+ (b+c—bc)—a(b+c—bc)
=a+b+c—bc—ab—ac+abc..........(2)

= (1)=(2) = = 1is associative.

Exercises (2): Which of the following binary operations is a comm., asso.?

[1] a*xb=a—-—b, VabE€ELZ.

[2] a®Ob=2ab, Va,b€E.

[3] a#b=a3+b3 VabER.
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Definition 1.9: (Mathematical System)
A Mathematical System or (Mathematical Structure) is a non-empty set of

elements with one or more binary operations defined on this set.

Example 1.10:
(R,+),(R,.), (R,—), (R\{0},+),(R,+,.),(N,+),(E,+,x) are Math. System.
But (N, —), (R,+), (0, +, —)are not Math. System.

Definition 1.11: (Semi group)

A semi group is a pair (S, *) in which S is an empty set and * is a binary
operation on S with associative law.
(i.e.) (§,%) is semi group < (1) S + @,

(2) = 1is a binary operation,

(3) Va,b,ce€S,(axb)*c=a *(b *c).

Example 1.12:
@ (Z,+),(Z,x),(N,+),(N,x),(E,+), (E,x) are semi groups.
2) (0,+4),(Z,-), (E,—), (R\{0},+) are not semi groups.

Definition 1.13: (The identity element)
Let (S,%) be a Mathematical System and e € S. Then e is called an identity
element if axe=exa=aqa,Vace€Ss.

Definition 1.14: (The inverse element)
Let (S,*) be a Mathematical System and a,b € S. Then b is called an inverse of
aifaxb=b*a=e and dentedbyb=al.

Definition 1.15: (The Group)
The pair (G,*) is a group iff (G,*) is a semi group with identity in which each

element of G has an inverse.

s i i) HAJ—@-}J;\_A_.HJJ\ ol g dlas) 4



Groups Theory 2023-2024 sl & ki

Definition 1.16: (The Group)
A group (G,*) is a non-empty set G and a binary operation * , such that the

following axioms are satisfied:
(1) The binary operation * is associative.
(i.e.)(a*b)*xc=ax(bx*c), V a,b,ceC
(2) There is an element e in G such that
axe=exa=aqa,Va€EQqG.
This element e is an identity element for * on G.
(3) For each a in G, there is an element b in G such that
ax*xb=bxa=e.

The element b is an inverse of a and denoted by a™ 1.

Remark 1.17:
Every group is a semi group but the converse is not true as in the following

example shows.
(N, +) is a semigroup but not group because Za! € N,Va € N.

Definition 1.18: (Commutative group)
A group (G,*) is called a Commutative group iffa *b = b xa,Va,b € G.

Example 1.19:
M Z,+),(E,+),(,+),(C, +) are commutative groups .
(2) (Z*,+) is not a group because there is no identity element for + in Z™.

3) (Z*, x) is not a group because there is an identity element 1 but no inverse
for 5.

4 (G =1{1,0, —1,2},+) is not group since + is not a binary operation on G,
1+2=3 ¢ G.

(5) (G ={1,—1},%) is comm. Group.

(6) (R\{0},%), (Q\{0},%),(C\{0},x) are comm. Groups.
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Example 1.20: Let G = {a, b, ¢, d} be a set. Define operation * on G by the following table.

(Klein 4-group)

Is (G,*) a commutative group?

Solution:
(1) Closure is true.
(2) Asso.?
(axb)xc=ax(bx*c)?
bxc=axd
d=d

3

C))

(6)

* a b c d
a a b c d
b b c d | a
c c d a b
d d a b c

bx(a*xc)=bxc=d=(bx*a)*c
cx(axb)=cxb=d=(cxa)*b
d*x(a*xc)=d*c=b=(d*a)*c...>

= * 1S asso.

The identity: To prove Je € G s.t.axe=e*xa =a,Va € G.
axa=a,bxa=b,cxa=c,d*xa=d.

= e = a is an identity element of G.

The inverse: a*a =a = a~

bxd=a=b1=d
cxc=a=clt=c
axa=a=al=a
dxb=a=d1=b
Comm. ?
ax*b=bxa?
b=0»>b
a*c=c*xa=c
axd=dx+xa=d
bxc=cxb=d
bxd=dx*xb=a
cxd=d*xc=b»b

= * IS a comm.

1L %

Therefore (G,*) is a comm. group and called Klein 4-group.
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Example 1.21: Let ¢ = {1,—1,i,—i} be a set and "." be operation on G.

Is (G,.) a group ? Comm. ?
Solution:

(1) Closure is true.
(2) Asso. Law is true
(3) 1 is an identity element.
@ 11t=1,-1"1=-1,it=—i,—-i"t=i
(5) Comm .is true
(G,.)1s a comm.group.

Example 1.22: Let G={ {g 2} ,a,be Z}.Is(G,+) group?

Show that (G, +) is a comm. group? (H.W)
Solution:
(1) Closure: ?

a 0 c 0 a+c 0 :
+ - -
Let a,b,c,d €Z , then{0 b} [0 d} { 0 b d} € G since atc €Z

and b+d € Z = Closure is true
(2) Asso. Low: HW
(3) Identity: ?

0= {8 8} 1s the identity element of G since

o b)+(o oo o+ [5 5[5
(4) Inverse: ?
a

Let a,b €Z 3 A={

0} . Toprove B = [—a

0. )
0 b 0 — b} 1s the inverse

element of A

A+B={a O}+ {—a 0 :{—a O}Jr[a O}:{O 0}
0 b 0 —b} 0O —-bJ 0 b 0 0

~B=A"1=VAeG 3 BeG such that B= A"

~ (G, +) isagroup.
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Example 1.23:
Let G=RXR={(a,b):a,b€ R,a # 0} and * be defined by
(a,b)*(c,d)=(ac,bc+d)
Prove that (G, * ) 1s group. Is (G, *) Comm.?
Solution:
(1) Closure:Let (a,b),(c,d)EG=a+0, c+0=ac+0
(a,b)*(c,d)=(ac,bc+d)EG ac+#0
(2) Asso.:Let(a,b), (c,d),(e,f)e G, wehave
(a,b)*[(c,d)*(e,f)]=(a,b)*(ce,de+{t)
=(ace,bcet+de+f)...... (1)
[(a,b)*(c,d)]*(e,f)=(ac,bc +d)=*(e,f)
= (ace,(bc+d)e+1))
= (ace,bce+de+f).....(2)
~ (1)=(2) , then asso. is true
(3) Identity : Let(a,b), (x,y) € G 3
(a,b) » (x,y) = (x,y) * (a,b) = (a,b)
(a,b) » (x,y) = (ax,bx+y) = (a,b)
cax=a = x=1
andbx +y =b =b+y=b =y=0
~ (x,y) = (1,0)
Also, (x,y)* (a,b) = (xa,ya+b) = (a,b)
sxa=a =x=1
va+b=b=ya=b—-—b=ya=0=>y=0
= (x,y) =(1,0)
~ (1,0) is an identity element of G
(4) Inverse: Let (a,b), (c,d)€ G ,a#0,c#0
(a,b)* (c,d)= (c,d)* (a,b)=(1,0)
(c,d)* (a,b)=(1,0)
(ac,bc+d)=(1,0)=ac=1 :,>c=%

bc+d=0=b-+d=0 =d= _S

1 -b\. .
~(c,d) = (Z ,;) is an inverse of G
(5) Comm : G is not comm. , since Take ( 3,5), (4,6)
(3,5)*(4,6)=(12,26) =  Gis not comm..
4,6)*(3,5)=(2,23)
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Example 1.24: Let (G, *) be an arbitrary group. The set of the function from G in to

G:Fg={fi:a€e G},f G- G st. fai(x)=a*xx ,x€Q,
With the composition (Fg, 0) is forms a group, prove that.
Solution:
(1) Closure: Letfa, fr€ Fg,a,b€eG
(faofo) (x) =fa (fo (x)) =fa (b x x)
=ax* (b x*x)
=(a*b) *x, since G is a group.
=fap(x) € Fg,since a*xbe€G
(2) Asso:Letf,, fo,fc€EFs,a,b,ce€G
(fa o fv) 0 fc = faxo 0 fc = flarvy*e
since * 1s asso. on G
= farrc) = fa 0 fore =fa 0 (fa 0 £2)
(3) Identity : f. is an identity of Fg, since
faofe=fue=fea=fc0 fa=1i
(4) Inverse : The inverse of f, in Fg is f,”!, since
foofi'=fe'=filu=flofu=1f
Also, if G 1s comm. group, then (Fg, 0) is comm. group .

Exercises (3): Determine the systems (G, *) . Is (G,*) group? Is (G,*) comm. group?
[11G=Z,axb=a+b+4
[2]G=RXR=1{a,b):a,beER} st

(a,b)*(c,d)=(a+b,b+d-3bd).
[BI(G = {f1, {2, f3, f4, {5, f6}, 0) , where

fi) =x, £2 (0) = =, f3 (x) =l , fa(x) = 2=, £5(0) = =, i) = —
[4] G ={(a,b):a,bER,a#0,b+#0}s.t.

(a, b) * (¢, d) = (ac, b+d)

[S](G={am:m€Z},+)

61G=Q ,axb=".
[71G=Z,axb=a+b-2
_ra 0
[8]LetG—{[0 b},a,beZ}.Is(G,.)group‘?zdxr
1 0
9] LetG {[O aj,a 7. 1s (G, +) group’

[10] LetG = {f;,f;,f5,f,}, where f; 31 =1, 2, 3,4, are mappings on R\{0} 3
fi () = x.f, (&) = —x . f3 (&) == . f, (x) = ——. Show that (G, ) is a

group. Is (G, ) Comm. ?
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Some Properties of Groups:

Theorem 1.25: If G is a group with a binary operation *, then the left and right

cancellation laws hold in G, that 1s:
(1) a*xb=ax*xcimplies b=c
(2) bxa=c*xa implies b=c
Foralla, b, c € G.

Proof: H.W.

Theorem 1.26: In a group (G, *), there is only one element e in G such that e *

a=a*e=a, Va€egqa.

Proof: Suppose that G has two identity elements e and e’
thatmean Va€G.

axe=exa=aand axe'=e’*xa=a

Since each e and e’ belong to G , so

x e=e (Man paic ¢/ 5 _uaic ¢)

I (Mae paic g g _puaic )

ex el =e
els e=exel =¢
It follows that ¢/ = e.

Theorem 1.27: In a group (G, *), the inverse element of each element in G is

unique.
Proof: Let ¢ € G and a has two inverse x and x’ . Such that

a*x= xxaq=e¢e

axx'=x*a=e
Sx=x*e=x*(a*xx)
=(x*a)*x
=exx
_

~x = x' = the inverse is an unique element.

Theorem 1.28: If (G, *) is group , then
1) el=e

Q2) (ah'=a Vaedqd

B) (axb)'=b'sxa! V a,be G

KU G PSP SRR G pSJay bl o hld o] Gyt g ) 10
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Proof:
(1) Let e'=x
e 1s the identity element of G => x xe = e * x = x --———-- (1)
x is the inverse of e —exx=x*e =e---—-- (2)

from(l)and(2) > x=e=> e’ =e.
(2) (ah)'=(a'y'xe
= (a')'x(a'xa)

=(@')y!xa’) xa
=e*xa=a.

(3) Toprove, (axb)!=blxal, va,beG
Since (a*b) EG = (axb)'e G
(axb)*(a*xb)y!=(axb)y!'* (axb)=-e(def.of inverse)
(axb)x(axb)! = ¢
alx(axb)x(axb)y'=alxe
(a'xa) xb* (a*b)'=a’

e x bx(axb)l=a’l
bl«bx(axb)!=blxal
ex(a*xb)!'=blxal

~(axb)'=blxa’l

Theorem 1.29: Let (G, x ) be a group . Then

(1) (a*b)'=a'«b!< Giscomm. group.

(2) If a=a!, then G isacomm . gp . (Is the converse true? )
Proof: (1) (= ) Let (G, *) be a group and (a * b)'=alx b,
To prove G is comm.

Let a,be G.Toshowa*xb=bx*xa,Va,beG

axb=((a*xb)?')! (by (a')! = a)
= (blxal)! (by Theorem 1.29 (3))
= (b))« (ah)! (by (a *b)'=a'xb")
=bxa (by (a')'=a)

~ G 1s comm. gp.

(&) Let (G, *) is acomm . gp.

To prove (a * b)! = a’lx b!

(a*b)'= blxal (by Theorem 1.29 (3))
= alx b’ ( by comm.)
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(2)If a=a!, then Gis acomm . gp . (Is the converse true? )

Proof: Let a=a' Toprove, axb=bxa, Va,beG

Let a,beG and a*xbeG = (axb)=(ax*b)!
=b!xa! (by Theorem 1.29 (3))
=bxa (bya=al)

~ G 1s a comm. Group.

The converse of this part is not true.

(i.e.) if (G, *)iscomm . # a = a’

For example:

Let (G={1,-1,1, -1}, . ) be comm . group,
Leta=1 = a'l=-i

sa#al

Give another example ( H. W.)

Theorem 1.30: In a group (G, *) , the equations a* x=band y*a=Db havea

unique solution.
proof: we take
axx=b= a'x(axx)=a'xb
(a'xa)xx= alxb
e x x=alxb
x=alxb
To show the solution is a unique
Let ¥ €G st axx'=b
2 axx =axx
= X =x ( by com. law )
By same way, we prove y * a=b has Solution y=b=x* al.

Definition 1.31: (The Integral Powers of a)
Let (G, *) be a group . The integral powers of @, a € G is defined by :

1 a*=ax*a..*xa
n—tim
2) a’=e
B amr=((@H"nez
4 a*t'=a"*x a ,nezZ".
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For example 1.32:

(1) In(R, ),
3°_0,
3¥=3+3+3=9,
37?2=031?=(-3)+(-3)
= —6.

(2 In(R, ),
20=1,
2=2x2x%x2=8,

2-4: (2-1)4 — (%)4

1 1 1 1 1
= SXSX-X= = —
2 2 2 2 16
(3) IH(G: {19 _17 i: _i}a . ) s

=1, 2=ixi=-1, i2=({"P= () =-ix-i=-1

Theorem 1.33: Let (G, *) beagroupand a€ G, m,n € Z, then:
1) a" a"=a"" Vn,meZ (H. W)
2) @™ =a"m Vn,meZ"
B) a"=(a")’ VneZzZ"
4) (axb)"=a"sb" VneZ < Giscomm. group.
Proof:
(2) To prove, (a")™= a"™, Vn,meZ"
Letp(m): C(a")™ =a"™ vneZ")
To prove, P(m) is true Vm € Z*
If m=1=p(l):(a")' =a"=a""'= p(1) is true
Suppose that p(k) is true withk € Z" andk < m

(an)k ~ 4 ank
We have to prove that p (k+ 1) is true P (k+ 1) : (a?)<'! = ank* D99
(a") 1= (am)kx(am)! (by define of a™! =a"xa')

_ gtk g gn

=a" by (1) above

_ gnlktD)

~p(k+1)istrue
By the principle of mathematical induction
= p(m)istrueVmeZ"

s@)"=a" , Vn,meZ
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(3) Toprove, a"=(a)" =(@")!, vnezZ’
If n=1=p(l): (@@ =a'=(a)!
Suppose thatif n=k istrue = p (k)= (a’)*=(a¥)’
We must prove p (k+1 ) is true
P (k‘|‘1) : (a-l)k+1 = (ak+1)-1 ?
(a-l)k+1 — (a-l)k * (a-l)l — (ak)-l * (al)-l — (ak+1)-l
~p(k+1)istrue
By the principle of math. ind. = p (n)istrue ,Vn € Z".

4) (>=)Ifn=2= (axb)*>=a%*b?, To prove, is comm. Group.
(axb)*x(axb)=a*xaxbxb ( by def. of power int. )
ax(b=*a)xb=ax*x(axb)x*xb ( by asso .)
(bxa)*b=(a*b)*b ( by cancellation law )

bxa=axb ( by cancellation law )
G 1s comm . group.
(&) Let G be comm . group .
To prove, (a*b)" =(a" b"), Vn€EZ.
Letp (n): (a*Db)"=a"b"
Ifn=1= (axb)!=alxb! istrue
Suppose that p (k) is true withk € Z" andk <n
s.t. (axb)k=ak x bk
We must prove P (k +1) is true
P(k+1):(axb) 1= (ax*b)« (axDb)
=a*+ bk alx b!
= (a*«bX) * (b xa) ( G is comm .)
=ak« (b« b ) *a ( by asso .)
— ak % bk+1>|< a
— ak* a * bk+l
— ak+1>l< bk+1

~pkt1)istrue, VneZ*
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Definition 1.34: ((Order of a Group ))

The number of elements of a group G is called the order of G and is denoted by
|G| oro(G).

G 1s called a finite group if | G| < oo and infinite group otherwise .

Definition 1.35: ( The Order of an Element )

The order of an element a , a € G is the least positive integer n such that a" =e

, Where e is the identity element of G. We denoted to order a by | a | or o(a).
(ie) |a| =n if a"=e, n €Z"

Example 1.36: (Z, +) is an infinite group .

Example 1.37: In a trivial group G= {0}
| G|=1, Gis the only group of order 1.

Example 1.38: find the order of G and the order of each element of (G, .). Such
that G={1,-1,1, -1}.

Solution:

|G|=4 and

la|=17?

Ifa=1,and (1)! =1, = |a|=|1]=1 (since e=1)

Ifa=-1,and (-12=1 = |-1]|=2
Ifa=i,and i’=-1,i*=1= |i|=4
Ifa=-i,and -i*=-1,-’=i, -i*=1 = |-i|=4

The_Group of Integers Modulo n (n ks aaal) Sae ¥ 6 pa j)

Definition 1.39:
Leta, b€ ,7Z,n>0.Then a is congruent to » modulo # if
a—b=nk, k €Zanddenoted bya=bor a=b(modn)

Example 1.40:

(1) 17=5 (mod6),sine17-5=12=(6) (2)

2) 8 =4(mod2 ), since 8 —4=4=(2) (2)

(3) -12=3(mod3), since -12-3=-15=(3) (-5)

4 5 £2 (mod2),since 5-2=3+Q2)k),V k€EZ
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Theorem 1.41: The congruence module # is an equivalence relation on the set of

integers.

Proof: Leta,b,c€Z,n>0

(1) a—a=0=(n)(0)
~a=a(modn) Reflexive is true

2) If a =b(modn), Toprove, b = a (mod n)
Sincca=b(modn) = a-b=nk,ke€eZ

so,b—a=-nk=(n)(k),-k €Z

~ b = a (mod n ) = Symmetric is true

3) If a=b(modn)and b = c (mod n). To prove, a =c¢ (mod n)
Since a = b (mod n) , then a-b = nk
And b =c(modn),thenb—c = nk
By adding these twoeqs . = a—-c=n(k+k'),k+ kK€ Z
s~ a= c¢ (modn) = Transitive is true

=~ The congruence modulo 7 is an equivalence relation .

Definition 1.42: Leta € Z, n > o. The congruence class of a modulo 7,
denoted by [ a ] is the set of all integers that are congruent to a modulo 7 .
(i.e.)
[a]={z€ Z:z=a(modn) }
={z€Z:z=a+kn,keZ}
Example 1.43:
If n=2,find[0],[1]
[0]={z€Z:z=0(mod2)}
={z€Z :z=0+2k,ke Z}
={0,+2,+4,........... }
[1]={z€Z:z=1(mod2)}
={z€eZ:z=1+2k .,k €Z}
={+1,+3,+5,....}.
Example 1.44:
Ifn=3,find[1],[7]
[11={z€Z:z=1(mod3) }
={1,1+3,1+6....}
= {1,-2,4,7,-5,....}.
[7] (H.W.)
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Definition 1.45:

The set of all congruence classes modulo 7 is denoted by Z, (which is read Z mod »n).
Thus

Z,={[0],[1],[2],-..... ,[n-1]},or

Z,={0,1,2,..,n—1}

Z, has n elements.

Example 1.46:

Z1= {0}
Z>=1{0,1}
Z5-{0,1,2}.

Now, we define addition on Z, (write +, ) by the following :
[a] +»[b]=[a+.b], V[a],[b] € Z:

Similarly, we define multiplication on Z, ( write "., " by the following :
[a] ..[b]=[a..b], V[a],[b]€E Z

It is easy to see that (Z. , +» ) 1s an abelian group with identity [ O | and for every [ a ]
€Z,, [a]' =[ n — a]. This group is called the Additive Group of Integers
Modulo 7 .

Also, (Z, , .,) is abelian semi group with identity [ 1 ] . It is called the Multiplicative Semi
Group of Integers modulo n.

Example 1.47: (Z,,+4), Z,={0,1,2,3}
(1)  Closure is true

Ol
=

[\S]
(O8]

(2) Asso. is true +4

(3) 0 is an identity element

ol
ol
-y
N
Wl

(4) Inverse:

—_
A
Il
N
1
(ol
Il
w
—_
=1
NI
Wl
Ql

21=4-2=2 S S S
31-=4_-3=1 2 2 3 0 1
5) (zomm: 3 3 0 1 5

v
. (Zy,+,4) 1s a Comm.group.
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Example 1.48: (Z4,.4),Z,={0,1,2,3}
It is clear that we cannot have a group.

S
Ol
-
NI
(o8]

Since the number 1 is identity,

Ql
Ol
Ol
Ql
l

but the numbers 0 and 2 have no inverse.

—_
Ol
-
NI
(o8]

It follows that (Z4, .4) 1s not a group,
but it is semi group.

NI
l
NI
Ql
NI

Wl
ol
wl
)

—

Example 1.49: Find the order of G and the order of each element of (G, *),

such that (G, *) = (Zs, +3).
Solution:
Z3={0,1,2,3,4,5,6,7),e=0

0(Zg)=8 since (The number of elements of a group Zs= 8)

The order of an element a, a € Zs is the least positive integer n such that a® =0 ,

where 0 is the identity element of Zs.

0o(0)=1 since (0)'=0

o(1)=8 since (1)8—1+1+1+1 1+1+1+1=8=0=e¢

0(2)=4 since (2>’=2+2+2+2=8=0=¢

0o3)=8 since 3*=3+3+3+3+3+3+3+3=24
=8+8+8=0+0+0=0=¢

o(4)=2 since (4>=4+4=8=0=¢

o(5)=8 since (5¥=5+5+5+5+5+5+5+5=40
=(8)°=(0°=0=¢

o(6)=4 since (6)=6+6+6+6=24=0=¢

o(7)=8 since (7)*=56=0=¢

Exercises (4):

1. Find the order of Zs and the order of each element of (Zs, +¢).
2. Find the order of Zo and the order of each element of (Zs, +3).
3. Find the order of Zs and the order of each element of (Zo, +9).

s i i)

HAJ—‘A—,‘J;\—“—EM"‘ ol g Al
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The Permutations : (Jzaulh)

Definition 1.50: A Permutation or symmetric of a set A is a function from A in to A

that 1s both one to one and on to.
1-1,onto

fiA——A
1-1,onto
Symm (A) = {f| f: A ——— A} the set of all permutation on A.
If A is the finite set {1, 2, ..., n}, then the set of all permutation of A is denoted by S,
or Pnand o(Sn) =n!, where n! =n (n-1) ... (3)(2) (1)

Example 1.51: Let A= {1, 2} . Write all permutation on A.
A A
, f
» <]

o= 0.2 3.0 2

Example 1.52: Let A = {1, 2, 3}. Write all permutation on A.

A=z Dh=G 3 DA=G 1 )

=2 D80 2 D= 2 D)

Py = Symm(A) = {f1, f2, f3 far f5, fo}
o(P3)=31=(3)(2)=6

Theorem 1.53: If A # ¢, then the set of all permutation on A Forms agroup
with composition of Mapps.

(i.e.) Let A # ¢, then (Symm(4), o) is a group.

Proof:

1-1,onto

Symm (A)= {f| ftA——— A isamapp.},
To prove, (Symm(A) ,0) is a group.

. _ 1-1,0nto
since 3iyj:A—> A aperm.on A

s iy € Symm(4A) = Symm(4) # ¢.
(1) Closure: Let f, g € symm(A), it follows that
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1-1,onto

fiA——5 A

1-1,onto

1-1,onto
g A—— A

= fog:A ——> A= fog € Symm(A)

(2) Asso. : True since the composition of maps is an asso.

(3) The identity : since iy € symm(A) and ijof = foiy = f forall f in

symm(A) = i, 1s an idenetity element
1-1,0nto
. f7 € Symm(A4)and fof ! = f~lof =i,
> (Symm(A), o) 1s a group.
Is (Symm(A), o) comm. group ? (H.W.)

1-1,0nt
4) Theinverse:Vf:A—>A,EIf‘1:A#>A

Example 1.54: Let A= {1, 2, 3}, then S3={f3, f2, f3, f4. f5, f6} and (S3, 0) is a

group. This group is called symmetric group.

Ol Al |G| fafs | fe
hAlh | L || fa|fs | f6
ol | fs|fi|fe| fa|Ts
lfs|h || fs|fe]| fa
fa | fa | fs | fe | | f2 | f5
fs | fs | Je | fa | 5| H | fo
foe | fe | fa | fs | 2| f3 | h

(S3, 0) is not Comm. Group.

Also (Ss3,0) is called the group of symmetries of on equilateral triangle .
(Q,ﬁl.ud‘ ¢ Sludia Culial i \)BU\SSJaj)

e i)
g \ 2
3
2
1A2 3&1
2 . .
1&3 3&2 2A1

s i i)

3

1
ZAE

Aol o gde slas) (use A0 0 i as

rotations

mirror images
ol ol o Wil

H‘)Jd_aa_'adi_a_hudl Ol g dlae) 20
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Definition 1.55 (The Dihedral Group D, of Order 2n)
The n' dihedral group is the group of symmetries of the regular n-gon. o(D,) =

2n
Djs : is the third dihedral group. A
, O (D3)=(2) (3) = 6 elements.

Example 1.56: The group of symmetries of square D4 or Gs, o ( Ds) =8
Gs =D4= {11, 12, 13, 14, h, v, D1, D2}, where 1; are a clockwise rotation
V, h, Di, D, are mirror images

4 3
PRAEN P
1 2
4 3 3 2 2 1 1 4
: 2 4 1 3 4 5 3
I Iz rs s
1
3 4 1 2 2 3 ¢
3
2 1 4 3 1 4 2
h D D:
1

(1) Write all elements of Gs as a permutation.
(2) Is (Gs, 0) comm. group? Use table (H.W.)

Definition 1.57: A permutation f of a set 4 is called a cycle of length # if there
exist ap, az, ...... , A, € A such that
fa)=ar,f(a)=as, ....f(apr1)=a,,f(a,) =arand f(x) =x,

forx€Abutx ¢{ai,ay,...... , 4y} . Wewrite f=(ai, az, ..., a).

Example 1.58: If 4 = {1, 2, 3,4, 5}, then

(é % § 411 i)=(1354)(2)=(1354)

Observe that
(1354) =(3541) = (5413) = (4135).
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Example 1.59: Let 4 = {1, 2, 3,4, 5, 6} be a set of a group Ss . Then
1 2 3 456\ _ _
(3 1 35 2 2)=142)0(3)0(6) = (142)0(56)

And

(é 42; 3 ;‘ ;?)=(16)0(245)0(3)=(16)0(245)

These permutations above are not cycles.

Theorem 1.60: Every permutation f of a finite set 4 is a product of disjoint cycles.

Definition 1.61: A cycle of length 2 is a transposition.

Example 1.62: The permutation

/1 2 3 4
f‘(1432

) = (24) is a transposition.

Proposition 1.63: Any permutation can be expressed as the product of transpositions.
(i.e.) (aiaz ... an) = (a1a2) (a1a3) .....(a1ax)
Therefore any cycle is a product of transpositions.

Example 1.64: We see that (16 ) (2 5 3)=(16) (2 5) (2 3).

Definition 1.65: A permutation is even or odd according as it can be written as the
product of an even or odd number of transpositions.

Example 1.66: Let f = (; i 2
1 2 3

Solution: f = (3 N )=(132)=(13)(12)

f has 2 transpositions = f is an even perm.

) € Ps. Is feven or odd permutation.

Example 1.67: Determine an even and odd permutations of P4. (H.W)

Definition 1.68: (Alternating Group) Jaalill 3 e )
The Alternating group on 7 letters, denoted by A4, is the group consisting of all even
permutations in the symmetric group S;.

O(An)zn?! . A,cS,

Example 1.69: Let S;={f1, > /5 f+ f5, fs } , then
As={i, f> f3} 1s a sub group of S3

0 (4ds3) = g =3
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