نظرية النزمر Groups Theory

University of Baghdad – College of Education for Pure Sciences – Ibn Al-Haitham – Department of Mathematic

2th Stage Year 2023 – 2024

اعداد و تدریس

أ. د. فباطسمة فينصل كريم م. رنسسا نسوري منجيب

CONTENTS

Chapter One	Groups Theory	1 - 22
Chapter Two	Subgroups and Cyclic Groups	22 - 45
Chapter Three	Normal Subgroups and Quotient Groups	46 – 64
Chapter Four	Isomorphic Groups	65 - 83
Chapter Five	Some Applications of Groups	84 – 98

المصادر العربية:

[1] مقدمة في الجبر المجرد الحديث. تاليف ديفيد بيرتون وترجمه عبد العالي جاسم.

English References

- [1] Introduction to modern abstract algebra. By David M. Burton.
- [2] A first course in abstract algebra. By J.B. Fraleigh.
- [3] Group theory. By M. Suzuki

Chapter One : Groups Theory الفصل الاول : نظرية الزمر

<u>Definition 1.1:</u> Binary Operations

Let A be a non empty set. A binary operation on a set A is a function from $A \times A$ into A. (i.e.)

 $*: A \times A \rightarrow A$ is a binary operation iff

- (1) $a * b \in A, \forall a, b \in A$ (Closure)
- (2) If $a, b, c, d \in A$ such that a = c and b = d, then a * b = c * d (well-define).

Example 1.2:

- (1) The operations $\{+, -, \times\}$ are binary operations on R, Z, Q, C. But " - " is not binary operation on N.
- (2) The operations $\{+, -\}$ are not binary operations on 0 (odd number).
- (3) The operation \div is abinary operation on $R\setminus\{0\}$, $Q\setminus\{0\}$, $C\setminus\{0\}$.

Example 1.3:

Let a * b = a + b + 2, $\forall a, b \in Z^+$. Is * a binary operation on Z^+ ?

Solution:

- (1) Closure: Let $a, b \in Z^+$, then $a * b = \overbrace{a+b}^{\in Z^+} + 2 \in Z^+$.
- (2) well-define: Let $a, b, c, d \in A$ such that a = c and b = d, then a * b = a + b + 2 = c + d + 2 = c * d \Rightarrow * is a binary operation on Z^+ .

Example 1.4:

Let $a * b = a^b, a, b \in Z$. Is * is a binary operation on Z.

Solution:

- (1) Closure : if a = 3 and b = -1. Then $a * b = 3^{-1} = \frac{1}{3} \notin \mathbb{Z}$ \Rightarrow * is not a binary operation on \mathbb{Z} .
- **Remark 1.5:** Some time we used the symbols *, $_{0}$, #, \bigcirc , ... to denote a binary operation.

Exercises (1): which of the following are binary operations?

[1]
$$a * b = a + b, \forall a, b \in R \setminus \{0\}.$$

[2]
$$a \odot b = \frac{a}{b}, \forall a, b \in Z.$$

[3]
$$a \# b = a + b - 3, \forall a, b \in N.$$

[4]
$$a \circ b = a + 2b - 5, \forall a, b \in R.$$

[5]
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \forall \frac{a}{b}, \frac{c}{d} \in Q \setminus \{0\}.$$

<u>Definition 1.6:</u> (Commutative)

A binary operation * on a set A is called a commutative if and only if

$$a * b = b * a \ \forall \ a, b \in A.$$

Definition 1.7: (Associative)

A binary operation * on a set A is called an associative if

$$(a * b) * c = a * (b * c) \forall a, b, c \in A.$$

Example 1.8: Let R be a set of real numbers and * be a binary operation on R defined as a*b=a+b-ab. Is * commutative and associative.

Solution:

Let $a, b \in R$, then

$$a * b = a + b - ab = b + a - ba = b * a$$

Which implies that * is commutative.

Let $a, b, c \in R$, then

$$a * (b * c) = a * (b + c - bc)$$

$$= a + (b + c - bc) - a(b + c - bc)$$

$$= a + b + c - bc - ab - ac + abc \dots \dots \dots \dots (2)$$

 \Rightarrow (1) = (2) \Rightarrow * is associative.

Exercises (2): Which of the following binary operations is a comm., asso.?

[1]
$$a * b = a - b$$
, $\forall a, b \in Z$.

[2]
$$a \odot b = 2ab$$
, $\forall a, b \in E$.

[3]
$$a \# b = a^3 + b^3$$
, $\forall a, b \in R$.

<u>Definition 1.9:</u> (Mathematical System)

A Mathematical System or (Mathematical Structure) is a non-empty set of elements with one or more binary operations defined on this set.

Example 1.10:

 $(R, +), (R, .), (R, -), (R \setminus \{0\}, \div), (R, +, .), (N, +), (E, +, \times)$ are Math. System. But $(N, -), (R, \div), (0, +, -)$ are not Math. System.

Definition 1.11: (Semi group)

A semi group is a pair (S, *) in which S is an empty set and * is a binary operation on S with associative law.

- (i.e.) (S,*) is semi group \Leftrightarrow (1) $S \neq \emptyset$,
 - (2) * is a binary operation,
 - (3) $\forall a, b, c \in S, (a *b) *c = a *(b *c).$

Example 1.12:

- (1) $(Z, +), (Z, \times), (N, +), (N, \times), (E, +), (E, \times)$ are semi groups.
- (2) $(0, +), (Z, -), (E, -), (R \setminus \{0\}, \div)$ are not semi groups.

Definition 1.13: (The identity element)

Let (S,*) be a Mathematical System and $e \in S$. Then e is called an identity element if $a*e=e*a=a, \forall a \in S$.

Definition 1.14: (The inverse element)

Let (S,*) be a Mathematical System and $a, b \in S$. Then b is called an inverse of a if a*b=b*a=e and dented by $b=a^{-1}$.

<u>Definition 1.15:</u> (The Group)

The pair (G,*) is a group iff (G,*) is a semi group with identity in which each element of G has an inverse.

Definition 1.16: (The Group)

A group (G,*) is a non-empty set G and a binary operation * , such that the following axioms are satisfied:

(1) The binary operation * is associative.

(i.e.)
$$(a * b) * c = a * (b * c), \forall a, b, c \in G$$

(2) There is an element e in G such that

$$a * e = e * a = a, \forall a \in G.$$

This element e is an identity element for * on G.

(3) For each a in G, there is an element b in G such that

$$a * b = b * a = e$$
.

The element b is an inverse of a and denoted by a^{-1} .

Remark 1.17:

Every group is a semi group but the converse is not true as in the following example shows.

(N, +) is a semigroup but not group because $\nexists a^{-1} \in N, \forall a \in N$.

<u>Definition 1.18:</u> (Commutative group)

A group (G,*) is called a Commutative group iff a*b=b*a, $\forall a,b \in G$.

Example 1.19:

- (1) (Z, +), (E, +), (Q, +), (C, +) are commutative groups.
- (2) $(Z^+, +)$ is not a group because there is no identity element for + in Z^+ .
- (3) (Z^+, \times) is not a group because there is an identity element 1 but no inverse for 5.
- (4) $(G = \{1, 0, -1, 2\}, +)$ is not group since + is not a binary operation on G, $1+2=3 \notin G$.
- (5) $(G = \{1, -1\}, \times)$ is comm. Group.
- (6) $(R\setminus\{0\},\times)$, $(Q\setminus\{0\},\times)$, $(C\setminus\{0\},\times)$ are comm. Groups.

Example 1.20: Let $G = \{a, b, c, d\}$ be a set. Define operation * on G by the following table. (Klein 4-group)

*	а	b	С	d
а	а	b	С	d
b	b	С	d	а
С	С	d	а	b
d	d	а	b	С

Is (G,*) a commutative group?

Solution:

- (1) Closure is true.
- (2) Asso. ?

$$(a * b) * c = a * (b * c) ?$$

 $b * c = a * d$
 $d = d$
 $b * (a * c) = b * c = d = (b * a) * c$
 $c * (a * b) = c * b = d = (c * a) * b$
 $d * (a * c) = d * c = b = (d * a) * c \rightarrow$
 \Rightarrow * is asso.

(3) The identity: To prove $\exists e \in G \ s.t. \ a * e = e * a = a, \forall a \in G.$ a * a = a, b * a = b, c * a = c, d * a = d.

 $\Rightarrow e = a$ is an identity element of G.

(4) The inverse: $a * a = a \Rightarrow a^{-1} = a$

$$b * d = a \Rightarrow b^{-1} = d$$

$$c*c=a\Rightarrow c^{-1}=c$$

$$a * a = a \Rightarrow a^{-1} = a$$

$$d * b = a \Rightarrow d^{-1} = b$$

(5) Comm. ?

$$a * b = b * a ?$$

$$b = b$$

$$a * c = c * a = c$$

$$a*d=d*a=d$$

$$b*c=c*b=d$$

$$b*d=d*b=a$$

$$c*d = d*c = b$$

 \Rightarrow * is a comm.

Therefore (G_{i}^{*}) is a comm. group and called **Klein 4-group**.

Example 1.21: Let $G = \{1, -1, i, -i\}$ be a set and "." be operation on G.

Is (G, .) a group? Comm.?

Solution:

	1	-1	i	-i	
1	1	-1	i	-i	
-1	-1	1	-i	i	
i	i	-i	-1	1	
-i	-i	i	1	-1	

- (1) Closure is true.
- (2) Asso. Law is true
- (3) 1 is an identity element.
- (4) $1^{-1} = 1$, $-1^{-1} = -1$, $i^{-1} = -i$, $-i^{-1} = i$
- (5) Comm .is true
- \therefore (G, .) is a comm.group.

Example 1.22: Let $G = \{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, a, b \in Z \}$. Is (G,+) group?

Show that (G, +) is a comm. group? (H.W)

Solution:

(1) Closure: ?

Let a,b,c,d \in Z, then $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} a+c & 0 \\ 0 & b+d \end{bmatrix} \in$ G since a+c \in Z and b+d \in Z \Rightarrow Closure is true

- (2) Asso. Low: H.W
- (3) Identity: ?

 $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is the identity element of G since

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

(4) Inverse: ?

Let a, b \in Z \ni A= $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. To prove B = $\begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix}$ is the inverse element of A

$$A+B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix} = \begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix} + \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 \therefore B = A⁻¹ $\Rightarrow \forall$ A \in G \exists B \in G such that B= A⁻¹.

 \therefore (G, +) is a group.

Example 1.23:

Let $G = R \times R = \{(a, b) : a, b \in R, a \neq 0 \}$ and * be defined by (a, b) * (c, d) = (ac, bc + d)

Prove that (G, *) is group. Is (G, *) Comm.?

Solution:

- (1) Closure: Let $(a,b), (c,d) \in G \Rightarrow a \neq 0, c \neq 0 \Rightarrow ac \neq 0$ $(a,b)*(c,d) = (ac,bc+d) \in G \ ac \neq 0$
- (2) Asso.: Let (a,b), (c,d), $(e,f) \in G$, we have (a,b)*[(c,d)*(e,f)] = (a,b)*(ce,de+f) = (ace,bce+de+f).....(1) [(a,b)*(c,d)]*(e,f) = (ac,bc+d)*(e,f) = (ace,(bc+d)e+f)= (ace,bce+de+f).....(2)

 \therefore (1) = (2), then asso. is true

(3) Identity: Let (a,b), $(x,y) \in G \ni$ (a,b) * (x,y) = (x,y) * (a,b) = (a,b) (a,b) * (x,y) = (ax,bx+y) = (a,b) $\therefore ax = a \Rightarrow x = 1$ and $bx + y = b \Rightarrow b + y = b \Rightarrow y = 0$ $\therefore (x,y) = (1,0)$ Also, (x,y) * (a,b) = (xa,ya+b) = (a,b) $\therefore xa = a \Rightarrow x = 1$

$$ya + b = b \Rightarrow ya = b - b \Rightarrow ya = 0 \Rightarrow y = 0$$

 $\therefore (x,y) = (1,0)$

 \therefore (1,0) is an identity element of G

(4) Inverse: Let
$$(a,b)$$
, $(c,d) \in G$, $a \neq 0$, $c \neq 0$
 $(a,b) * (c,d) = (c,d) * (a,b) = (1,0)$
 $(c,d) * (a,b) = (1,0)$
 $(ac,bc+d) = (1,0) \Rightarrow ac = 1 \Rightarrow c = \frac{1}{a}$
 $bc+d=0 \Rightarrow b\frac{1}{a}+d=0 \Rightarrow d=-\frac{b}{a}$

 $bc + a = 0 \implies b = a + a = 0 \implies a = -c$ $\therefore (c, d) = \left(\frac{1}{a}, \frac{-b}{a}\right) \text{ is an inverse of } G$

(5) Comm: G is not comm., since Take (3,5), (4,6) (3,5)*(4,6) = (12,26) \Rightarrow G is not comm.. (4,6)*(3,5) = (12,23)

Example 1.24: Let (G, *) be an arbitrary group. The set of the function from G in to $G: F_G = \{f_a : a \in G\}, f_a: G \to G \text{ s.t. } f_a(x) = a*x, x \in G,$

With the composition (F_G, o) is forms a group, prove that.

Solution:

- (1) Closure: Let f_a , $f_b \in F_G$, $a, b \in G$ $(f_a \circ f_b)(x) = f_a(f_b(x)) = f_a(b * x)$ = a * (b * x) = (a * b) * x, since G is a group. $= f_{a*b}(x) \in F_G$, since $a*b \in G$
- (2) Asso: Let f_a , f_b , $f_c \in F_G$, a, b, $c \in G$ $(f_a \circ f_b) \circ f_c = f_{a*b} \circ f_c = f_{(a*b)*c}$ since * is asso. on G $= f_{a*(b*c)} = f_a \circ f_{b*c} = f_a \circ (f_a \circ f_c)$
- (3) Identity: f_e is an identity of F_G , since f_a o $f_e = f_{a*e} = f_{e*a} = f_e$ o $f_a = f_a$
- (4) Inverse: The inverse of f_a in F_G is f_a^{-1} , since f_a o $f_a^{-1} = f_{a*a}^{-1} = f_{a^{-1}*a} = f_a^{-1}$ o $f_a = f_e$

Also, if G is comm. group, then (F_G, o) is comm. group.

Exercises (3): Determine the systems (G, *). Is (G, *) group? Is (G, *) comm. group?

[1]
$$G = Z$$
, $a * b = a + b + 4$

[2]
$$G = R \times R = \{a, b\} : a, b \in R\}$$
 s.t $(a, b) * (c, d) = (a + b, b + d - 3bd).$

[3](G = {f₁, f₂, f₃, f₄, f₅, f₆}, o), where

$$f_1(x) = x$$
, $f_2(x) = \frac{1}{x}$, $f_3(x) = 1 + x$, $f_4(x) = \frac{x+1}{x}$, $f_5(x) = \frac{x}{x+1}$, $f_6(x) = \frac{1}{1+x}$

[4]
$$G = \{(a, b) : a, b \in R, a \neq 0, b \neq 0\} \text{ s.t.}$$

 $(a, b) * (c, d) = (ac, b+d)$

[5]
$$(G = \{ am : m \in Z \}, +)$$

[6]
$$G = Q^+$$
, $a * b = \frac{ab}{5}$.

[7]
$$G = Z$$
, $a * b = a + b - 2$

[8] Let
$$G = \{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, a, b \in Z \}$$
. Is $(G, .)$ group? zdxr

[9] Let
$$G = \{ \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}, a \in Z \}$$
. Is $(G, +)$ group?

[10] Let
$$G = \{f_1, f_2, f_3, f_4\}$$
, where $f_i \ni i = 1, 2, 3, 4$, are mappings on $R \setminus \{0\} \ni f_1(x) = x$, $f_2(x) = -x$, $f_3(x) = \frac{1}{x}$, $f_4(x) = -\frac{1}{x}$. Show that (G, \circ) is a group. Is (G, \circ) Comm. ?

Some Properties of Groups:

Theorem 1.25: If G is a group with a binary operation *, then the left and right cancellation laws hold in G, that is:

- (1) a * b = a * c implies b = c
- (2) b * a = c * a implies b = c

For all a, b, $c \in G$.

Proof: H.W.

Theorem 1.26: In a group (G, *), there is only one element e in G such that e * a = a * e = a, $\forall a \in G$.

<u>Proof:</u> Suppose that G has two identity elements e and e' that mean \forall a \in G.

$$a * e = e * a = a$$
 and $a * e' = e' * a = a$

Since each e and e belong to G, so

$$e * e' = e' * e = e$$
 (عنصر e' عنصر e' عنصر محاید) $e' * e = e * e' = e'$ (عنصر e' عنصر e' عنصر e' عنصر e'

It follows that e' = e.

Theorem 1.27: In a group (G, *), the inverse element of each element in G is unique.

Proof: Let $a \in G$ and a has two inverse x and x'. Such that

$$a * x = x * a = e$$

$$a * x' = x' * a = e$$

$$\Rightarrow x = x * e = x * (a * x')$$

$$= (x * a) * x'$$

$$= e * x'$$

$$= x'$$

 $\therefore x = x' \Longrightarrow$ the inverse is an unique element.

Theorem 1.28: If (G, *) is group, then

- (1) $e^{-l} = e$
- (2) $(a^{-1})^{-1} = a \quad \forall \ a \in G$
- **(3)** $(a*b)^{-1}=b^{-1}*a^{-1} \quad \forall \quad a,b \in G$

Proof:

(1) Let $e^{-l} = x$

e is the identity element of $G \Rightarrow x * e = e * x = x$ ----- (1)

x is the inverse of e $\Rightarrow e * x = x * e = e$ ----- (2)

from (1) and (2) $\Rightarrow x = e \Rightarrow e^{-1} = e$.

- (2) $(a^{-1})^{-1} = (a^{-1})^{-1} * e$ $= (a^{-1})^{-1} * (a^{-1} * a)$ $= ((a^{-1})^{-1} * a^{-1}) * a$ = e * a = a
- (3) To prove, $(a * b)^{-1} = b^{-1} * a^{-1}$, $\forall a, b \in G$ Since $(a * b) \in G \Rightarrow (a * b)^{-1} \in G$ $(a * b) * (a * b)^{-1} = (a * b)^{-1} * (a * b) = e$ (def. of inverse) $(a * b) * (a * b)^{-1} = e$ $a^{-1} * (a * b) * (a * b)^{-1} = a^{-1} * e$ $(a^{-1} * a) * b * (a * b)^{-1} = a^{-1}$ $e * b * (a * b)^{-1} = a^{-1}$ $b^{-1} * b * (a * b)^{-1} = b^{-1} * a^{-1}$ $e * (a * b)^{-1} = b^{-1} * a^{-1}$ $\therefore (a * b)^{-1} = b^{-1} * a^{-1}$

Theorem 1.29: Let (G, *) be a group. Then

- (1) $(a * b)^{-1} = a^{-1} * b^{-1} \Leftrightarrow G \text{ is comm. group.}$
- (2) If $a = a^{-1}$, then G is a comm. gp. (Is the converse true?)

Proof: (1) (\Rightarrow) Let (G, *) be a group and (a * b)⁻¹ = a⁻¹ * b⁻¹.

To prove G is comm.

Let $a, b \in G$. To show a * b = b * a, $\forall a, b \in G$

$$a * b = ((a * b)^{-1})^{-1}$$
 (by $(a^{-1})^{-1} = a$)
 $= (b^{-1} * a^{-1})^{-1}$ (by Theorem 1.29 (3))
 $= (b^{-1})^{-1} * (a^{-1})^{-1}$ (by $(a * b)^{-1} = a^{-1} * b^{-1}$)
 $= b * a$ (by $(a^{-1})^{-1} = a$)

∴ G is comm. gp.

 (\Leftarrow) Let (G, *) is a comm. gp.

To prove $(a * b)^{-1} = a^{-1} * b^{-1}$

$$(a * b)^{-1} = b^{-1} * a^{-1}$$
 (by Theorem 1.29 (3))
= $a^{-1} * b^{-1}$ (by comm.)

(2) If $a = a^{-1}$, then G is a comm. gp. (Is the converse true?)

Proof: Let
$$a = a^{-1}$$
 To prove, $a * b = b * a$, $\forall a, b \in G$
Let $a, b \in G$ and $a * b \in G \implies (a * b) = (a * b)^{-1}$
= $b^{-1} * a^{-1}$ (by Theorem 1.29 (3))

$$= b * a$$
 (by $a = a^{-1}$)

 \therefore G is a comm. Group.

The converse of this part is not true.

(i.e.) if (G, *) is comm $. \Rightarrow a = a^{-1}$

For example:

Let $(G = \{1, -1, i, -i\}, .)$ be comm. group,

Let
$$a = i \implies a^{-1} = -i$$

$$\therefore a \neq a^{-1}$$

Give another example (H. W.)

Theorem 1.30: In a group (G, *), the equations a * x = b and y * a = b have a unique solution.

proof: we take

$$a * x = b \implies a^{-1} * (a * x) = a^{-1} * b$$

$$(a^{-1} * a) * x = a^{-1} * b$$

$$e * x = a^{-1} * b$$

$$x = a^{-1} * b$$

To show the solution is a unique

Let
$$x' \in G$$
 s.t. $a * x' = b$
 $\Rightarrow a * x' = a * x$
 $\Rightarrow x' = x$ (by com. law)

By same way, we prove y * a = b has Solution $y = b * a^{-1}$.

<u>Definition 1.31:</u> (The Integral Powers of *a*)

Let (G, *) be a group. The integral powers of $a, a \in G$ is defined by:

(1)
$$a^n = \underbrace{a * a ... * a}_{n-tim}$$

(2)
$$a^0 = e$$

(3)
$$a^{-n} = (a^{-1})^n, n \in Z^+$$

(4)
$$a^{n+1} = a^n * a , n \in Z^+$$
.

For example 1.32:

(1) In (R, +), $3^0 = 0$, $3^3 = 3 + 3 + 3 = 9$, $3^{-2} = (3^{-1})^2 = (-3) + (-3)$ = -6.

(2) In (R, .),

$$2^{0} = 1$$
,
 $2^{3} = 2 \times 2 \times 2 = 8$,
 $2^{-4} = (2^{-1})^{4} = (\frac{1}{2})^{4}$
 $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$

(3) In (G = {1, -1, i, -i}, .),

$$i^{0}=1$$
, $i^{2}=i \times i = -1$, $i^{-2}=(i^{-1})^{2}=(-i)^{2}=-i \times -i = -1$

Theorem 1.33: Let (G, *) be agroup and $a \in G, m, n \in Z$, then:

- (1) $a^n * a^m = a^{n+m} \quad \forall n, m \in Z \quad (H. W.)$
- (2) $(a^n)^m = a^{n m} \quad \forall n, m \in Z^+$
- (3) $a^{-n} = (a^n)^{-1} \quad \forall n \in \mathbb{Z}^+$
- (4) $(a * b)^n = a^n * b^n \quad \forall n \in Z \iff G \text{ is comm. group.}$

Proof:

(2) To prove, $(a^n)^m = a^{n m}$, $\forall n, m \in Z^+$

Let
$$p(m)$$
: $((a^n)^m = a^{nm} \forall n \in Z^{+})$

To prove, P(m) is true $\forall m \in Z^+$

If
$$m = 1 \Longrightarrow p(1) : (a^n)^1 = a^n = a^{n \times 1} \Longrightarrow p(1)$$
 is true

Suppose that p(k) is true with $k \in Z^+$ and $k \le m$

$$\therefore$$
 $(a^n)^k = a^{nk}$

We have to prove that p(k + 1) is true $P(k + 1) : (a^n)^{k+1} = a^{n(k+1)}$??

$$(a^n)^{k+1} = (a^n)^k * (a^n)^1$$
 (by define of $a^{n+1} = a^n * a^1$)
 $= a^{nk} * a^n$
 $= a^{nk+n}$ by (1) above
 $= a^{n(k+1)}$

$$\therefore$$
 p (k + 1) is true

By the principle of mathematical induction

 \implies p (m) is true \forall m \in Z⁺

$$\therefore (a^n)^m = a^{nm}$$
 , $\forall n, m \in Z^+$

(3) To prove, $a^{-n} = (a^{-1})^n = (a^n)^{-1}$, $\forall n \in Z^+$ If $n = 1 \implies p(1) : (a^{-1})^1 = a^{-1} = (a^1)^{-1}$ Suppose that if n = k is true $\implies p(k) = (a^{-1})^k = (a^k)^{-1}$ We must prove p(k+1) is true $P(k+1) : (a^{-1})^{k+1} = (a^{k+1})^{-1}$? $(a^{-1})^{k+1} = (a^{-1})^k * (a^{-1})^1 = (a^k)^{-1} * (a^1)^{-1} = (a^{k+1})^{-1}$ $\therefore p(k+1)$ is true

By the principle of math. ind. $\implies p(n)$ is true, $\forall n \in Z^+$.

(4) (\Rightarrow) If $n = 2 \Rightarrow (a * b)^2 = a^2 * b^2$, To prove, is comm. Group. (a * b) * (a * b) = a * a * b * b (by def. of power int.) a * (b * a) * b = a * (a * b) * b (by asso.) (b * a) * b = (a * b) * b (by cancellation law) b * a = a * b (by cancellation law)

∴ G is comm . group.

 (\Leftarrow) Let G be comm . group .

To prove, $(a * b)^n = (a^n * b^n)$, $\forall n \in \mathbb{Z}$.

Let $p(n) : (a * b)^n = a^n * b^n$

If $n = 1 \implies (a * b)^1 = a^1 * b^1$ is true

Suppose that p (k) is true with $k \in Z^+$ and $k \le n$

s.t.
$$(a * b)^k = a^k * b^k$$

We must prove P(k+1) is true

$$\begin{split} P(\ k+1) : (\ a * b\)^{k+1} &= (\ a * b)^k * (\ a * b)^1 \\ &= a^k * \ b^k * a^1 * b^1 \\ &= (a^k * b^k) * (\ b * a\) \qquad (\ G \ is \ comm \ .) \\ &= a^k * (\ b^k * b\) * a \qquad (\ by \ asso \ .) \\ &= a^k * b^{k+1} * a \\ &= a^{k+1} * b^{k+1} \end{split}$$

p(k+1) is true, $\forall n \in \mathbb{Z}^+$

<u>Definition 1.34:</u> ((Order of a Group))

The number of elements of a group G is called the order of G and is denoted by |G| or o (G).

G is called a finite group if $|G| < \infty$ and infinite group otherwise.

<u>Definition 1.35:</u> (The Order of an Element)

The order of an element a, $a \in G$ is the least positive integer n such that $a^n = e$, where e is the identity element of G. We denoted to order a by |a| or o(a).

(i.e.)
$$|a| = n$$
 if $a^n = e, n \in \mathbb{Z}^+$

Example 1.36: (Z, +) is an infinite group.

Example 1.37: In a trivial group $G = \{0\}$ |G| = 1, G is the only group of order 1.

Example 1.38: find the order of G and the order of each element of (G, .). Such that $G = \{1, -1, i, -i\}$.

Solution:

| G | = 4 and | a | = ?? If a = 1, and $(1)^1 = 1$, $\Rightarrow |a| = |1| = 1$ (since e = 1) If a = -1, and $(-1)^2 = 1$ $\Rightarrow |-1| = 2$ If a = i, and $i^2 = -1$, $i^4 = 1 \Rightarrow |i| = 4$ If a = -i, and $-i^2 = -1$, $-i^3 = i$, $-i^4 = 1 \Rightarrow |-i| = 4$

The Group of Integers Modulo n

(أرمرة الإعداد الصحيحة مقياس n)

Definition 1.39:

Let a, $b \in Z$, n > 0. Then a is congruent to b modulo n if a - b = nk, $k \in Z$ and denoted by $a \equiv b$ or $a \equiv b \pmod{n}$

Example 1.40:

- (1) $17 \equiv 5 \pmod{6}$, sine 17 5 = 12 = (6)(2)
- (2) $8 \equiv 4 \pmod{2}$, since 8 4 = 4 = (2)(2)
- (3) $-12 \equiv 3 \pmod{3}$, since -12 3 = -15 = (3)(-5)
- (4) $5 \not\equiv 2 \pmod{2}$, since $5-2=3 \neq (2)(k)$, $\forall k \in \mathbb{Z}$

<u>Theorem 1.41:</u> The congruence module n is an equivalence relation on the set of integers.

Proof: Let a, b, $c \in \mathbb{Z}$, n > 0

- (1) a a = 0 = (n) (0) $\therefore a \equiv a \pmod{n}$ Reflexive is true
- (2) If $a \equiv b \pmod{n}$, To prove, $b \equiv a \pmod{n}$ Since $a \equiv b \pmod{n} \implies a - b = nk$, $k \in Z$ so, b - a = -nk = (n)(-k), $-k \in Z$ $\therefore b \equiv a \pmod{n} \implies$ Symmetric is true
- (3) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. To prove, $a \equiv c \pmod{n}$ Since $a \equiv b \pmod{n}$, then a-b=nkAnd $b \equiv c \pmod{n}$, then b-c=nk'By adding these two eqs. $\Rightarrow a-c=n(k+k')$, $k+k' \in \mathbb{Z}$ $\therefore a \equiv c \pmod{n} \Rightarrow$ **Transitive is true**

 \therefore The congruence modulo n is an equivalence relation.

<u>Definition 1.42:</u> Let $a \in Z$, n > o. The congruence class of a modulo n, denoted by [a] is the set of all integers that are congruent to a modulo n. (i.e.)

[a] =
$$\{z \in Z : z \equiv a \pmod{n} \}$$

= $\{z \in Z : z = a + k n, k \in Z \}$

Example 1.43:

If
$$n = 2$$
, find $[0]$, $[1]$
 $[0] = \{ z \in Z : z \equiv 0 \pmod{2} \}$
 $= \{ z \in Z : z = 0 + 2k, k \in Z \}$
 $= \{ 0, \mp 2, \mp 4, \dots \}$
 $[1] = \{ z \in Z : z \equiv 1 \pmod{2} \}$
 $= \{ z \in Z : z = 1 + 2k, k \in Z \}$
 $= \{ \mp 1, \mp 3, \mp 5, \dots \}.$

Example 1.44:

```
If n = 3, find [1], [7]

[1] = { z \in Z : z \equiv 1 \pmod{3} }

= {1,1 \opin 3,1 \opin 6 \ldots }

= {1,-2,4,7,-5,\ldots}.

[7] (H. W.)
```

Definition 1.45:

The set of all congruence classes modulo n is denoted by Z_n (which is read $Z \mod n$). Thus

$$Z_n = \{ [0], [1], [2], \dots, [n-1] \}, \text{ or } Z_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1} \}$$

 Z_n has n elements.

Example 1.46:

$$Z_1 = \{ \overline{0} \}$$

$$Z_2 = \{ \overline{0}, \overline{1} \}$$

$$Z_3=\;\big\{\overline{0},\,\overline{1},\,\overline{2}\big\}.$$

Now, we define addition on \mathbb{Z}_n (write $+_n$) by the following :

$$[a] +_n [b] = [a +_n b], \forall [a], [b] \in \mathbb{Z}_n$$

Similarly, we define multiplication on \mathbb{Z}_n (write ".," by the following:

$$[a] ._n [b] = [a ._n b], \quad \forall [a], [b] \in Z_n$$

It is easy to see that $(Z_n, +_n)$ is an abelian group with identity [0] and for every [a] $\in Z_n$, $[a]^{-1} = [n-a]$. This group is called the Additive Group of Integers Modulo n.

Also, $(Z_n, ...)$ is abelian semi group with identity [1]. It is called the Multiplicative Semi Group of Integers modulo n.

Example 1.47: $(Z_4, +_4), Z_4 = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3} \}$

- (1) Closure is true
- (2) Asso. is true
- (3) $\overline{0}$ is an identity element
- (4) Inverse:

$$\bar{1}^{-1} = \bar{4} - \bar{1} = \bar{3}$$

$$\overline{2}^{-1} = \overline{4} - \overline{2} = \overline{2}$$

$$\bar{3}^{-1} = \bar{4} - \bar{3} = \bar{1}$$

(5) Comm:

$$\bar{1} + \bar{2} = \bar{3} = \bar{2} + \bar{1}$$

 $\bar{1} + \bar{3} = \bar{0} = \bar{3} + \bar{1}$

 $: (Z_4, +_4)$ is a Comm.group.

+4	$\overline{0}$	1	2	3
Ō	$\bar{0}$	1	2	3
1	1	2	3	Ō
2	2	3	Ō	1
3	3	ō	1	2

Example 1.48: $(Z_4, ._4), Z_4 = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3} \}$

It is clear that we cannot have a group.

Since the number $\overline{1}$ is identity,

but the numbers $\overline{0}$ and $\overline{2}$ have no inverse.

It follows that $(Z_4, ...4)$ is not a group, but it is semi group.

•4	$\bar{0}$	1	2	3
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\bar{0}$	$\bar{0}$
1	$\bar{0}$	1	2	3
2	ō	2	ō	2
3	ō	3	2	1

Example 1.49: Find the order of G and the order of each element of (G, *), such that $(G, *) = (Z_8, +_8)$.

Solution:

$$Z_8 = \{ \ \overline{0} \ , \ \overline{1} \ , \ \overline{2} \ , \ \overline{3} \ , \ \overline{4} \ , \ \overline{5} \ , \ \overline{6} \ , \ \overline{7} \ \} \ , \ e = \overline{0}$$

 $o(Z_8) = 8$ since (The number of elements of a group $Z_8 = 8$)

The order of an element $a, a \in Z_8$ is the least positive integer n such that $a^n = \overline{0}$, where $\overline{0}$ is the identity element of Z_8 .

$$o(\overline{0}) = 1$$
 since $(\overline{0})^1 = \overline{0} = e$

$$o(\bar{1}) = 8$$
 since $(\bar{1})^8 = \bar{1} + \bar{1} = \bar{8} = \bar{0} = e$

$$o(\overline{2}) = 4$$
 since $(\overline{2})^2 = \overline{2} + \overline{2} + \overline{2} + \overline{2} = \overline{8} = \overline{0} = e$

o(
$$\bar{3}$$
) = 8 since ($\bar{3}$)⁸ = $\bar{3}$ + $\bar{3}$ = $\bar{24}$
= $\bar{8}$ + $\bar{8}$ + $\bar{8}$ = $\bar{0}$ + $\bar{0}$ + $\bar{0}$ = $\bar{0}$ = e

$$o(\bar{4}) = 2$$
 since $(\bar{4})^2 = \bar{4} + \bar{4} = \bar{8} = \bar{0} = e$

o(
$$\bar{5}$$
) = 8 since $(\bar{5})^8 = \bar{5} + \bar{5} = \overline{40}$
= $(\bar{8})^5 = \overline{(0)}^5 = \bar{0} = e$

$$o(\overline{6}) = 4$$
 since $(\overline{6})^8 = \overline{6} + \overline{6} + \overline{6} + \overline{6} = \overline{24} = \overline{0} = e$

$$o(\overline{7}) = 8$$
 since $(\overline{7})^8 = \overline{56} = \overline{0} = e$

Exercises (4):

- 1. Find the order of Z_6 and the order of each element of $(Z_6, +_6)$.
- 2. Find the order of Z_9 and the order of each element of $(Z_8, +_8)$.
- 3. Find the order of Z_6 and the order of each element of $(Z_9, +_9)$.

The Permutations:

(التباديل)

<u>Definition 1.50</u>: A Permutation or symmetric of a set A is a function from A in to A that is both one to one and on to.

$$f: A \xrightarrow{1-1,onto} A$$

Symm $(A) = \{f \mid f: A \xrightarrow{1-1,onto} A\}$ the set of all permutation on A.

If A is the finite set $\{1, 2, ..., n\}$, then the set of all permutation of A is denoted by S_n or P_n and $o(S_n) = n!$, where n! = n (n-1) ... (3)(2) (1)

Example 1.51: Let $A = \{1, 2\}$. Write all permutation on A.

$$Symm(A) = \{i, f\} = \{\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}\}.$$

Example 1.52: Let $A = \{1, 2, 3\}$. Write all permutation on A.

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

$$P_3 = Symm(A) = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

o(P_3)= 3! = (3)(2) = 6

Theorem 1.53: If $A \neq \varphi$, then the set of all permutation on A Forms agroup with composition of Mapps.

(i.e.) Let $A \neq \varphi$, then (Symm(A), o) is a group.

Proof:

Symm $(A) = \{f \mid f: A \xrightarrow{1-1,onto} A \text{ is a mapp.} \},$

To prove, (Symm(A), 0) is a group.

since $\exists i_A: A \xrightarrow{1-1,onto} A$ a perm. on A

 $\therefore i_A \in \operatorname{Symm}(A) \implies \operatorname{Symm}(A) \neq \varphi.$

(1) Closure: Let f, $g \in \text{symm}(A)$, it follows that

$$f: A \xrightarrow{1-1,onto} A, g: A \xrightarrow{1-1,onto} A$$

$$\Rightarrow f \circ g: A \xrightarrow{1-1,onto} A \Rightarrow f \circ g \in \text{Symm}(A)$$

- (2) Asso. : True since the composition of maps is an asso.
- (3) The identity: since $i_A \in \text{symm}(A)$ and $i_A \circ f = f \circ i_A = f$ for all f in $\text{symm}(A) \Rightarrow i_A$ is an identity element
- (4) The inverse : $\forall f: A \xrightarrow{1-1,onto} A, \exists f^{-1}: A \xrightarrow{1-1,onto} A$: $f^{-1} \in \text{Symm}(A) \text{ and } fof^{-1} = f^{-1}of = i_A$

 \therefore (Symm(A), o) is a group.

Is (Symm(A), o) comm. group ? (H.W.)

Example 1.54: Let $A = \{1, 2, 3\}$, then $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ and (S_3, o) is a group. This group is called symmetric group.

О	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	f_3	f_1	f_6	f_4	f_5
f_3		f_1	f_2	f_5	f_6	f_4
f_4	f_4	f_5		f_1		f_3
f_5	f_5	f_6	f_4	f_3	f_1	f_2
f_6	f_6	f_4	f_5	f_2	f_3	f_1

(S₃, o) is not Comm. Group.

Also (S₃,0) is called the group of symmetries of on equilateral triangle.

(زمرة تناظر المثلث متساوى الساقين)

Definition 1.55 (The Dihedral Group D_n of Order 2n)

The n^{th} dihedral group is the group of symmetries of the regular n-gon. $o(D_n) = 2n$

 D_3 : is the third dihedral group.

, O
$$(D_3) = (2)(3) = 6$$
 elements.

Example 1.56: The group of symmetries of square D_4 or G_8 , o (D_4) = 8 $G_8 = D_4 = \{r_1, r_2, r_3, r_4, h, v, D_1, D_2\}$, where r_i are a clockwise rotation V, h, D_1 , D_2 are mirror images

- (1) Write all elements of Gs as a permutation.
- (2) Is (Gs, o) comm. group? Use table (H.W.)

Definition 1.57: A permutation f of a set A is called a cycle of length n if there exist $a_1, a_2, \ldots, a_n \in A$ such that

$$f(a_1) = a_2, f(a_2) = a_3, ..., f(a_{n-1}) = a_n, f(a_n) = a_1 \text{ and } f(x) = x,$$

for $x \in A$ but $x \notin \{a_1, a_2, ..., a_n\}$. We write $f = (a_1, a_2, ..., a_n)$.

Example 1.58: If $A = \{1, 2, 3, 4, 5\}$, then

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (1354)(2) = (1354)$$

Observe that

$$(1354) = (3541) = (5413) = (4135).$$

ظرية الزمر 2023-2024 Groups Theory

Example 1.59: Let $A = \{1, 2, 3, 4, 5, 6\}$ be a set of a group S₆. Then

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix} = (142)o(3)o(56) = (142)o(56)$$

And

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 & 2 & 1 \end{pmatrix} = (16)o(245)o(3) = (16)o(245)$$

These permutations above are not cycles.

Theorem 1.60: Every permutation f of a finite set A is a product of disjoint cycles.

<u>Definition 1.61:</u> A cycle of length 2 is a transposition.

Example 1.62: The permutation

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = (24)$$
 is a transposition.

Proposition 1.63: Any permutation can be expressed as the product of transpositions.

(i.e.)
$$(a_1a_2 ... a_n) = (a_1a_2) (a_1a_3) (a_1a_n)$$

Therefore any cycle is a product of transpositions.

Example 1.64: We see that (16)(25)(25)(25).

<u>Definition 1.65:</u> A permutation is **even or odd** according as it can be written as the product of an even or odd number of transpositions.

Example 1.66: Let $f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in P_3$. Is f even or odd permutation.

Solution:
$$f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 2$$

f has 2 transpositions \Rightarrow f is an even perm.

Example 1.67: Determine an even and odd permutations of P₄. (H.W)

Definition 1.68: (Alternating Group)

The Alternating group on n letters, denoted by A_n is the group consisting of all even permutations in the symmetric group S_n .

o
$$(A_n) = \frac{n!}{2}$$
, $A_n \subset S_n$

Example 1.69: Let $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, then

 $A_3 = \{i, f_2, f_3\}$ is a sub group of S_3

o
$$(A_3) = \frac{6}{2} = 3$$