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Chapter one 2023-2024 Topological Spaces

Chapter One : Topological Spaces

Definition : Topology & Topological Space
Let X be a nonempty set and t be a family of subsets of X (i.e., t < IP(X) ). We say t
Is a topology on X if satisfy the following conditions :
1) X der
(2) fU,Vert,then UNVer
The finite intersection of elements from t is again an element of .
(3) IfU,et;aeA, then YpepUgoet VaeA
The arbitrary (finite or infinite) union of elements of t is again an element of .
We called a pair (X, t) topological space.

Remarks :

[1] The topological space (X, 1) is sometimes called the space X.

[2] The elements of X are called points of the space.

[3] When write t we said topology and when write (X, t) we said topological
SPace.

Example : Let X ={a, b, ¢}, 11 = {X, ¢, {a}}, = = {X, ¢, {a, c}},

13 ={X, ¢, {a, b}, {a c}} = {X, ¢, {a}. {b}.{a c}} and 5= {X, {a}, {b}, {a b}}.
IS T4, To, T3, T4, Ts tOPOlOQy ON X.

Solution : Notes that t; and 7, is topology on X since its satisfy the three conditions
of topology.

13 IS not topology on X since {a, b} N {a, c} = {a} ¢ w3 (i.e., the condition two is
not satisfy).

14 1S not topology on X since {a} |J {b} ={a, b} ¢ t, (i.e., the condition three is not
satisfy).

75 1S not topology on X since ¢ ¢ 13 (i.e., the condition one is not satisfy).

Example : Let X = {1, 2, 3, 4}. Let

[1] 7, ={0,X,{1},{2},{3},{1,2,3}}. Then, is 7, is a topology on X? (H.W)
[2] 7, ={0,X,{3,4},{2},{3},{1,2,3}}. Then, is T, is a topology on X? (H.W)
[3] 5 = {{1},{2},{1,2}}. Then, is 75 is a topology on X? (H.W)

[4] 7, ={0,X, {1},{2},{1, 2}}. Then, is 7, is a topology on X? (H.W)

[5] s =1{0,X,{1,2},{2,3},{1,2,3}}. Then, is 75 is a topology on X? (H.W)

WFUUJ_J u..u_}.zujiygm_}vd 1
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Example : Let X = {1,2,3}. Lett = {X, @} = I is atopology on X and is said to be
the Indiscrete topology.

Also, we have, [1]. X =R, t=1={Q,R}, [2]. X =Q,t=1={0,Q},

[38]. X =N, 7 =1 = {®,N}.

Example : Let X = {1,2,3}. Lett = {X,0,{1},{2},{3},{1,2},{1,3},{2,3}} =
P(X) = D is atopology on X and is said to be the discrete topology.

Also, we have, [1]. X =R, =D =1IP(R), [2]. X=Q,7t =D =1P(Q),
[3]. X =N, 7 =D = IP(N).

Remark : If X # ¢, then

[1] = ={X, ¢} is atopology on X and its the smallest topology that we can defined
on any set X and called Indiscrete topology and denoted by I. (i.e., | = {X, ¢}).

[2] t=1P(X) is a topology on X and its the largest topology that we can defined on
any set X and called Discrete topology and denoted by D. (i.e., D = IP(X) ).

[3] If tanytopology on XthenlctcD.

[4] ==D ifandonlyif {x}et Vxe X

Example : Let X = N, 7 = {X,9,{1},E}. Is T a topology on X?
Solution : No, since {1} € 1, E ={2,4,6,8,...} e tbut{1} UE ={1,2,4,6,..} &

Example : Let X = R, T = {R, 0, Q, Irr}. Is T a topology on X?
Solution : Yes, since

(1) ROET,

2) OdNR=0Q0€eT,dNQ=0€1,0nlrr=0€T1,QNnlrr=Q €.
3) PUR=RET,....... (H.W)

Example: Let X = R, 7, = {R,8, (0,1], =} and let 7, = {R, 8, (0,1], (—=2,1)}. Is
7, and 7, topologies on R?

Solution : 7,is not a topology on R since (0,1] € 14, {_?1} € 17, but (0,1] U {_71} ¢ 1.
Also, T, is not a topology on R since (0,1] € 75, (—2,1) € 7, but (0,1] n (—2,1) =
(0,1) ¢ t,and (0,1]U (—2,1) = (—2,1] € 7,.

Home works :
[1] LetX = {a,b,c,d}, then
- Ist; = {X,0,{a, c},{d}} atopology on X?
- Ist, ={0,{c, d},{d},{c}} atopology on X?

WFUUJ_J u..u_}.zujiygm_;.vd 2
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- Ist3 ={X,9,{a, b},{c,d}} a topology on X?
- Ist, = {X,®,{h}} atopology on X?
[2] LetX =N={1,23,....}, then
- Define the indiscrete topology on N.
- Ist; = {N,®,E, 0} atopology on N?
- Ist, ={N, 9, {1,3}, 0} a topology on N?
- Ist3 = {N, 9, {2}, {4}, E} a topology on N?
[3] LetX = R, then
- Ist; = {R, 0,{—1},{2}} a topology on R?
- Ist, = {R,0,{—1}, (0,2)} a topology on R?
- Ist3 = {R, 0, (—3,1],[1,), (—3,)} a topology on R?
- Ist, = {R, 0, (—x, 2),[—1,5), (—», 5],[-1,2)} a topology on R?

Remark : there are 29 different topology on a set X contain only three elements.

If X ={1, 2, 3}, then all the following is a topology on X.

= {X, ¢} Indiscrete Top.,  ©={X, ¢, {1}}, w={X ¢, {2}}, ©w={X ¢ {3}},
5= {X, ¢, {1} {1, 2}},  w%={X, ¢, {1}, {1, 3}}, w={X ¢, {1} {1 2}, {1, 3}},
5= {X, 0, {2} {1, 2}},  w={X ¢, {2}, {2, 3}}, o= {X ¢, {2}, {1, 2}, {2, 3}},
= X 0, {31 {1, 33} we={X ¢, {8} {2,3}},  ws={X ¢ {3} {1 3} {2,
31 =K 0, {1 23} ws= X 9,{2,3}}, me={X, ¢, {1, 3}}, wr={X ¢,
{15 {2}, {1, 2} we= {X, ¢, {1}, {3} {1, 3}}, o= {X, ¢, {2}, {3}, {2, 3}},
0= X, 0, {1} {2}, {1, 2}, {2, 3}, = {X ¢, {1}, {3}, {1, 3}, {2, 3}}, 1=
X9, {2} {3}, {2, 3} {1, 3}}  we= {X, ¢, {1}, {2, 3}}, = {X ¢ {2}, {1,
33 =X ¢, {31 {1, 3}, we={X, 0, {1}, {2}, {1, 2}, {1, 3}}, = {X ¢,
{1} {33, {1, 3}, {12} ws={X, ¢, {2}, {3}, {2, 3}, {1, 2}}, 0= {X, ¢, {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3}}=IP(X) Discrete Top..

Remark : If the number of elements of a set X four elements, then there are more
than deference four hundred topology on X.

Definition : Open set & Closed set
Let (X, t) be a topological space. The subsets of X belonging to t are called open
sets in the space X. i.e.,

If AcX A Aet = Aopenset
The subset A of X is called a closed set in the space X if its complement X\A is open
set. We will denoted the family of closed sets by ¥ i.e.,

If AcX A Ae¥F = Aclosed set.

If A subset X and A”c belong to T implies A is closed
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Chapter one 2023-2024 Topological Spaces

Example : Let X = {1,2,3}, 7 = {0, X, {1}, {1, 2}, {1,3}} be a topology on X. Then
[1] Is{2,3}isanopensetin X? No,since {2,3} ¢ t
[2] 1s{2,3}isaclosed setin X? Yes, since {2,3}¢ = {1} € 7.
[3] Find the family of all open sets.
Answer : {@,{1},{1, 2}, {1, 3}} is the family of all open sets in X.
[4] Find the family of all closed sets.
Answer : ¥ = {X,0,{2,3},{3},{2}}.
[5] Is {3} open set? Closed set?
Answer : (H.W)
[6] Is @, X are open sets? Closed sets?
Answer : @, X are open sets since @, X € t.
And, @, X are closed setssince ¢ =X etor (@ e ¥)and X =@ € 1.

Example : Let X = R, T = {@, R, Q}. Then,
[1] Find the family of all closed sets.
Answer : F= {R, @, Irr}.
[2] Isan openinterval (0,1) open in R?
Answer : No, since (0,1) € .
[3] Isanopeninterval (0,1) closed in R?
Answer : No, since (0,1)¢ = (—w,0] U [0,0) & T.

Example : (HW). Let X = R, 7 = {@, R, N, N¢}. Then,
[1] Is N open set? Closed set?

[2] Is N¢ open set? Closed set?

[3] Is(0,2) open set? Closed set?

[4] Is (—x,0) not open set?

[5] Find the family of all closed sets in R.

Remark : The sets in (X, 1) may be
[1] open and not closed. [2] closed and not open.
[3] closed and open (clopen). [4] not open and not closed.

Theorem : Let (X, 1) be a topological space and # be the family of closed sets on X,
then :

1) X, beF

(2) If A,Be¥,then AUBeF VA Be¥

A paliliy 2 (S WPYREPL R PTRN| 4
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3) If ApeF;aecA, then NuerA €T V AL e ¥

Proof :
(1) - o geF = XeF --x—gsAg@tﬁ}(}_\
(2) Let ABe¥F = A B‘er (def. of closed sets)

= A°(NB‘er (second condition of def. of top.)
= (AUUB)° er (De Morgan's laws)
= AUBe¥# (def. of closed sets)

(3) Let A,eF VoaeA

= A, et VaeA

= Ueer A%w €T (third condition of def. of top.)
= (NoerA) €T (De Morgan's laws)
= Necr A € F (def. of closed sets)

Proposition : Let X be a nonempty set and # be the family of subsets of X which

has properties

1) X oe¥F

(2) If FreF and F,e ¥, then FiUF e &

Q) If {Fulucac &, then (NoerFo€ F

Then the family t={X - F : F e # } isatopology on X, and ¥ is the family of all
closed sets in the topological space (X, 7).

Remark : The topology t is called the topology generated by the family of closed
sets .

Now we introduce some important examples of topological spaces and show
that the open sets and closed sets in this examples :

Example : Usual Topology on R

Lett,={R, ¢, U;V xeU Fopeninterval (a,b); xe(a b)c U}

or 1, = {U < R ; U = union of family of open interval}

show that (R, ru) is a topological space.

Solution :

(1) R=(—o,®)e1, (i.e.,Risopen interval and every open interval is open set)

d =(@,a) e

WFUUJ_J uw_}.l‘_l_}&gluw_}lﬁ 5
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Chapter one 2023-2024 Topological Spaces

(2) LetU,Ver,
if UorV=¢ = UNV=0¢er,
if Uor V=R = UNV=Ver (ifU=R)
= UNV=Uer (ifV=R)
Otherwise,
Let xeUNV = xeU A xeV

- XxeU = FJopeninterval (a,b); xe(a,b)cU
- XxeV = FJopeninterval (c,d);xe(c,d)cV
= xe(@b)N(,dcUNV
= X € (max{a, c}, min{b,d}) cUNV
= J open interval (max{a, c}, min{b, d});
x € (max{a, c}, min{b,d}) cU NV
=UNV e1,
(3) LetU,et, ;jaeA
iIf Uy,=R forsome o = Jper U =R ety VaeA
if Uy,=¢ foralloa =UwarUs=0¢ €1, VaeA
if U,=¢ forsome o =Hee=tmeda A g #Rl V‘,
Now,
Let X € JperUy = X € U, fOr some a.
- xe U, = 3Jopeninterval (a,b);xe(a b)cU,
= X e (a,b) cUueaUs
= UaeAU(x €Ty
(R, t,) is a topological space.

Remarks :

[1] Thesets (0,1) U(2,4),(—2,1) ... etc are open sets in 1.

[2] The natural numbers N is not open set since its cannot represented as a union of
open intervals, but its closed set since N° = (— o0, 1) U (1, 2) U... is open set in T,

[3] Every set contains discrete points is closed set in t,.

[4] Every closed interval is closed set in 1.
[5] The rational numbers set Q and the irrational numbers set Irr are not open sets

and not closed sets in t,.

Example : Let X =R and t = {R, ¢, Q, Irr}.
T isatopology on R and t is atopology different from <, in the previous example.

A paliliy 2 (S WPYREPL R PTRN| 6
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Chapter one 2023-2024 Topological Spaces

In this example the open intervals jfsAnot open sets since i-t-'e}\not contain, in T, while Q,
Irr are open and closed in the same time.

How being a topology on any set :
Let X be any nonempty set and A be a proper nonempty subset of X, then

[1] ©={X, ¢, A} isatopology on X for any X and for any A.
[2] ©={X, ¢, A, A} is a topology on X and this topology has the property that
every open set is close set in same time (i.e., t = F).

Example : Cofinite Topology
Let X be infinite set and t¢s = {U < X, U® = finite set} | {¢}
Show that (X, 1) IS a topological space.
Solution :
(1) € Teof (def. of T )

+ X°=¢ and ¢ is finite set, then X € teo
(2) LetU,V € 1

if UorV=¢ =UNV=0e¢ T

IfU=X =2UNV=V ety

if V=X =UNV=Uer1y

if UandV = ¢, X

= U°® and V* finite set
So, (UM V) = U V= finite set | J finite set = finite set
= UNV et

(3) LetU, €t ;0€A

if Uy=X forsome o = JpeaUs =X €Tt YaeA

if Upy=¢ forallo = UwaUa=0 €1 YoeA

if Upz¢orXforalloo = (Uoea Uo)® = Noer USe = N finite sets = finite set

= Jaer Ua € Teof
o (X, 1e0f) IS a topological space.

Remarks :

[1] Notes that X is any set, so there are infinite number of the topological spaces
that satisfy this definition according to the set which put replace from X which
has a condition infinite set, so we can replies X by N or Z or R or Q or Irr or

[0, 1] or (-0, 2] Or C .... etc.

WFUUJ_J u..u_}.zujiygm_;.vd 7
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Chapter one 2023-2024 Topological Spaces

[2]

[3]

Now : Take a special case when X = N and study the open and closed sets in the
space (N, Teof).
Notes that, N \ {1} is open set since its complement is {1} which is finite and
the set of even numbers E* and odd numbers O" are not open sets since the
complement of E* is O" and the complement of O" is E* and all E" and O are
not finite,
In general : every open set in the space (X, ) IS infinite set, but if the set is
infinite this not mean its open i.e.

Uety = U infinite set

&

In general : every finite set is closed set and every closed set (except X) is finite
set. i.e.,

AcF < A finiteset (A= X)

Example : Let X be any set contain more than one element and let xo any element in
X and T ={Uc X; X< U} U {d}. Show that (X, 1) is a topological space.

Solution :
(1) der (def. of 1)

Xer (since X contains all its elements, therefore its contain Xo)
(2) LetU,Ver

(3)

if UorV=¢ =U[V=¢er
if U=X =UNV=Ver

if V=X =UNV=Uer

if UandV = ¢, X

= XoeUA Xo€V (def. of 1)
=>XoeUNV (def. of intersection)
=>UVer

LetU, et ;oA
if Up,=¢d VaeA = UwerUa=0
if U,=¢ forsomea e A= Xoe U, forsome acA
= Xo € Uoen Ua
= Uaer U €1
(X, 1) is a topological space.

Remarks :

WFUUJ_J u..u_}.zujiygm_;.vd 8



Chapter one 2023-2024 Topological Spaces

[1] Notes that any set not contained X, is a closed set and any set contained X, is
open set.
Special case : Suppose that X =R and X, = 0, then
the sets {0}, (— «, 2), Q, [0, 1] ... etc are open. And
the sets {— 4}, Irr, N, (6, =), [3, 5] ... etc are closed since it iS not contained 0.

[2] In general : we can replace 0 by 2 or V5 or any other real number.
And we can replace R by any other set.

Example : Let X be a nonempty set contain more than one element and let x, any
elementin X and t = {U < X; Xo ¢ U} U {X}. Show that (X, t) is a topological

space.
Solution :
(1) Xer (def. of 1)

dber (since X, ¢ ¢ by def. of 1)

(2) LetU,Ver
if U=X A V=X =UNV=Xer
if xogUor Xxo2V=X%X¢UNV
= UNVer (def. of 1)
(3) LetU,et ;aeA
if U,=X forsomeaeA = JperUs=X €1
if 3U, #XVYoaeA = Xo¢g U, (def. of 1)
= Xg & Uuea Uy €7 (def. of 1)
(X, 1) is a topological space.

Remarks :
[1] Special case of this example we can take X = N and x, = 2, then the open sets are

N and every subset from N not contain the element 2, while every set contain the

element 2 is closed set.
[2] There are infinite number of spaces from this types when replace X by any set
and Xq by any element.

Example : Let X=Nandt={A, cN:A,={1,2,...,n}; neN}U{N, ¢}
show that t is a topology on N.

Solution : Notes that the elements of t as follow
A ={1}, A ={1,2}, Ax={1,2,3},...
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AlcAcA;c..... cAC...

1) X o6 et (def. of 1)
_ Ai ET lf lS]
2) LetAi,Ajer,thenAiﬂAj—{Aj e if l.>j}
_(As € T if 6§ = a and a finite
(3) LetA, et acA,then UaeAAa—{N €t if ainfinite}

(N, 1) is a topological space.

The following sets are open in this example :
Ao=1{1,2,3,...,100}, Axpx={1,2,3,....,30}
The following sets are closed in this example :
{3,4,5,...} =N\{1,2}, N\{1,2,3,....,10}, N\{1,2, 3, 4,5}

Example : Let X=Nandt={B, cN:B,= {n,nt1,n+2, ...} ; ne N} {¢}
show that t is a topology on N.
Solution : Notes that the elements of t as follow
B:=1{1,2,3,...}, B,=1{2,3,4,5,....}, B3=1{3,4,5, ...}
B:=N, B, =N\{1}, Bs=N\{1,2}, ... etc
BioB,oB;o.....

1) No¢ e (def. of 1)
B, €t if i>]
) LetBi,Bjer,thenBiﬂBj:{éjET l.fl.<j}
_(Bs € T if 6 <a and a finite
(3) LetBser aecA then UurBo= {N et if 1eA o infinite}

(N, 1) is a topological space.

Remark : The open sets in this example are a closed sets in the previous example
and vise verse.

Definition : Equal Topological Spaces
Let (X, 1), (Y, 1') be two topological spaces, we say that (X, t) equal to (Y, 1') if the
sets and topologies are equal, i.e.,

X, 7)=(Y,7) © X=Y Ar1=1

Definition : Finer Than & Coarser Than
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Let t1, T, be two topologies on X, we say the topology t, is Finer_than 1, if the
family 1 is subset of the family t, and we say 1, Coarser than t, and denoted by t;
< Ty, i.e.,

T, Finer than t; or t; Coarser than 1, iff 1, < 1.
Remarks : Let 1y, 1, be topologies on X, then
[1] 7t1() T2 is atopology on X since
(1) X oer and X, pet, = X denumw
(2) LetU, Vet ), = U,Ver and U Ver,
= U Vet and UNV e, (since 14, 1, are topologies on X)
>UNVeuNm
(3) LetUyeti[)1 ;€A
= U,et and Uyet, VaeA
= Uoer Ug € 11 aNd Jger Uq € T2 (since 14, T, are topologies on X)
= UsecrUs e 12
- 11[) 7, isatopology on X.
[2] U T, IS not topology on X in general, for example :
Let X = {1, 2, 3}, .1 = {X, ¢, {1}} and 1, = {X, ¢, {2}}. Notes that 1;, 1, are
topologies on X, but t; |J o = {X, ¢, {1}, {2}} is not topology on X.

Remarks :
[1] Intersection of infinite number of open sets need not open set.

Example : Let (X, 1) = (R, t;) and U, = (—%,1;) such that n € N. We know the

open intervals is open sets in the space (R, 1), SO {Un} ey IS a family of open
sets, but the intersection of this family is not open set since
MNhen (— %%) = {0} not open.
[2] Union of any family of closed sets need not closed set.
Example : Let (X, 1) = (N, 1) and A, = {2n}an i€,

A ={2}, A, = {4}, A; = {6}, ...... .
Notes that every set A, is closed for all n in this space, but the union of this
family is the positive even number {2, 4, 6, ....... } and this set is not closed in

this space (see example (N, tcf), page 5).

Definition : Neighborhood
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Let (X, 1) be a topological space, x € X and A < X. We called A is a neighborhood
for a point x if there exist an open set U contains x and contain in A and denoted by
nbhd. i.e.,

A isanbhdfor x < FJUet;xeUcCA
If A is open set and contains x we called A is open neighborhood for a point x.

Example : In the space (R, t,), every an open interval is an open nbhd for any point
in this interval, while the closed interval or half open interval is nbhd for every point
in this intervals except the end point in the closed interval.

Example : In the space (N, 1), find three open nbhds for the point 2 and two open
nbhds for the point 3.

Solution :

A=1{2,3,4,5 ...}, B={2,10,11, 12, ....} and C = {2, 20, 21, ....} are open
nbhds for the element 2.

U={3,4,5,....} and V= {3,6,7.8, ....} are open nbhds for the element 3.

Theorem : Let (X, 1) be a topological space and A c X, then A is open iff A contains
an open nbhd for every point in A.

Definition : Basis or Base
Let (X, 1) be a topological space and 3 be a subfamily from t. We called 3 is a basis
or base for 1, if every element in < is a union numbers of elements of B. i.e.,
Bisabasisorbasefor 1 < (1) Bcr
(2) vUet;U=iBi;Biep Vi

Remark : From the definition of the base we notes that the number of bases are not
determined, so the number of bases is open, may be finite number and may be infinite
number.

Example : Let X ={a, b, c} and t= {X, ¢, {a}, {b}, {a, b}}, define a base for t?
Solution : Let B = {X, ¢, {a}, {b}}
Clearly B < t and X, ¢, {a}, {b} € tand also X, ¢, {a}, {b} € B and
{a,b} et = {a b}={a} U {b}
p B

. B isabase for t.
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Remark : t is a base for t (i.e., we can chose B = t) and this is a special case and
conclude from this case there is not exists topology has no base and this base called
trivial base.

Example : Let X = {1, 2, 3} and © = IP(X) = {X, ¢, {1}, {2}, {3}, {1, 2}, {1, 3},
{2,3}}. Define two different bases for t?

Solution : Let B, = {¢, {1}, {2}, {3}}, B2={¢, {1}, {2}, {3}, {1, 2}}

We can show by a simple way that 3; and [, are bases for t since every one of them
generated the elements of 7.

Example : Define base for the usual topology (R, 7).

Solution : Let B={(a,b):acR AbeR}

Notes that 3 contain every open intervals which end points are real numbers

(i.e., (—3,2) e p while (-, 5) ¢ pB)

Notes that ¢ € B since ¢ = (a, a) such that a is real number.

To prove B is a base for 7, it is enough to prove R = (— oo, o), (— o, b) and (a, «)

equal union of family of elements of 3. So we introduce this prove :

R=Upzi(-m,n);(=n,n)ep VneN 1+ R
-3-2 -1 01 2 3

(o, b) = Us=1(b—n,b); (b—n,b)eP VYneN

——— ) R
b-3 b2 b-1 b

(@, ©)=Up=1(a,a+n);(@,a+tnef vneN

{ —r— R
a a+l at2 at+3
This is a prove that B is a base for .
Remarks :
[1] For one topology we can fined for more than one base (i.e., the base is not
unique).

[2] Every base for any topology must contains the empty set ¢ (i.e., ¢ € B) since ¢
e © must be equal union element from 3 (by def. of B).

[3] X may be not belong to the base 3 and the previous example clear that.

[4] If the singleton set {x} € 1, then {x} € B.
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Theorem : Let (X, 1) be a topological space and 3 be a base for 1, then
(1) Xisaunion elements of f.
(2) If By, B, € B, then By [ B is a union elements of f.
Proof :
(1) -~ Xet = X=union of elements of 3 (def. of base)
(2) - B;,B,ep and Pcr
= By, Byer
= Bi[1Bxex (second condition from def. of top.)
= B1 () B2 =union of elements of B  (def. of base)

This theorem clear the properties of base and the next theorem is a new method
to get a topology by using a family of sets from [ which satisfy the condition of
previous theorem.

Theorem : Let X be a nonempty set and 3 be a family of subsets of X satisfying the
following properties:
(1) X =union of family of elements of 3
(2) The intersection any two elements of f3 is a union elements of p.
Then t which is define as follows:
1 ={U < X ; U =union of elements of }
Is a topology on X and this is the unique topology on X such that 8 is a base for .
Proof : To prove 1 is a topology on X must prove the three condition for topology.
(1) der (def. of 1)
Xer (from (1))
(2) Let U Verttoprove UNVer
U Ver = U=UiBi A V=UjB; > Bi,BjepVi,j (def of 1)
= UNv=WUB)NWUB)=U;BiNB)
=UUkBx ; Bcep (from (2))
(3) LetUy,et VaeAtoprove Joper Us e

" Uget = U,=UiBi > BjepVi (def. of 7)
= Uae/\ Ua = UoceA(Ui BI) = Uk Bk
= User Ug €1 (def. of 1)

This prove that t is a topology on X by define of .

To prove that t is the unique topology generated from 3. Suppose there exists another
topology say t' generated from (3, this means that t' = all possible union for elements
of B, but T = all possible union for elements of = ' = 1.
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Definition : Subbasis
Let (X, 1) be a topological space and 3 be a base for t and /4 be a subfamily from t.

We called /4 is a subbasis for t if every element of basis 3 equal finite intersection
numbers of elements of 4. i.e.,

A isasubbasisoft<>V Bef = B=Nj.;S 3> Seb Vj;j=12,....n
Example : Let X ={a, b, c}, t= {X, ¢, {a}, {b}, {a, b}, {a, c}} and p = {¢, {a} {b},
{a, c}}. Define a subbasis for .

Solution : Let 5 = {X, {a, c}, {a, b}, {b}}.

Clear, 4 < r,to prove 4 is a subbasis for t we compute all different intersection for
elements of 4, if we get B, then /4 is subbasis for .

¢ ={a c}y N {b} {a}={a c}N{a b}, {b}={b}N{b}

{a,c}={a,c}N{ac} {ab}={a b}N{a b} X=XAOX,

So, we get all elements of 3, this means that 4 is a subbasis for 7.

Example : Define a subbasis for a usual topological space (R, ty).

Solution : From the previous example we prove that = {(a, b) ; a, b € R} is a basis
for t,. We must define a subbasis 4 for 1, such that 4 generated p.

Define 4={(a,b);a=—ow v b=0ow}

Notes that § < 1, and

~1,4)eBpA(14)ed, 0,3)eSA(~0,3)egP=>8zPBA Ba b

Now, to show that 4 is subbasis for t, we take an element of 3 and prove that its
equal finite intersection numbers of elements of /4 as follow :

\ L AUV W\ _
Let(a,b)ep ; a,beR < AL RNWRVEREAVLARAALVAAVARAARVARAARAARARAAARAARAAAAN » R
a b

(@ b) = (=, b) M (3, »)
=) €A
. A Is a subbasis for 1.

Remarks :

[1] We can find more than one subbasis for one topology.
[2] & may be not contain in a subbasis.

[3] XeA.

[4] = isasubbasis for .
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Theorem : Let X be a nonempty set and 4 be a subfamily of subsets of X, then the

set B = {B < X ; B = finite intersection numbers of elements of 4} is a basis for the
unigue topology on X define as follow :
1t ={U < X ; U =union of elements of B}.

Proof : without prove.
This theorem show that there exists a method to generated a topology on X if

we have a set 4 such that 4 generated 3 and 3 generated t and this topology is unique
such that B is a basis for t and 4 is a subbasis for .

Definition : Open Neighborhood System

Let (X, 1) be a topological space and x € X and ny be a family of open sets (i.e., nx <
1) and satisfying the following conditions:

(1) mx=oforall x e X.

(2) xeN V Ne ny.

(3) VN;,N; € nx = I Nz € ny suchthat N3 < N; [ N..

(4 YVNen, vyeN IN e ny suchthat N'cN.

5) Uet < vVx eU 3IN e ny,suchthat Nc U.

We called the family n = {ny ; x € X} open neighborhood system for t and denoted
by (0.n.s)

Example : Let X = {a, b, c} and t = {X, ¢, {a}, {b}, {a, b}}. Define open
neighborhood system for .

Solution_: We must prove for all element in X a family of this element satisfy the
five conditions in the definition as follow :

n. = {{a}, {a b}}, mo={{b}, {a b}}, nc ={X}, notes that

(1) ma Mo and n. are nonempty and contain of a family of open sets and

2) VNen,maeN,VNen,=beN and VNen.=ceN,

(3) Intersection of any two element in n, or n, or n¢ is an element in m, Or N, Or N

(4) {a,b} en.;be{a b} andb e {b}; {b} = {a b}
(5) Every open set satisfy the five condition
. M ={Na Nb, N} IS 0pen neighborhood system for t

Example : Define open neighborhood system for a usual topological space (R, t,).
Solution : Let x € R, define n, as follow : n,={(a, b) ; x e (a, b)}
I.e., Ny Is a family of every open sets that contain x.
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clear ny < 1, and ny satisfy the five conditions of open neighborhood system for t as
follow :

(1) nx#¢ since(x—g,Xx+g)e ng ;>0
(2) if Ne ny,then N=(a, b)and x € (a, b) (def. of 1)
(3) ifNy, Ny € ny
= N; open interval s.t. X € Ny and N, open interval s.t. X € N,
=N IN2= ¢
= N; [ N, open interval s.t. X € Ny [ N2
= N1 [IN2€
(4) letN € ncandyeN = Nopeninterval st.y e N= N € n,.
(5) This condition is satisfy from definition of usual topology on R.

Theorem : Let X be a nonempty and ny be a family of subsets from X. for all x € X ;
nx Satisfy the condition (1), (2), (3), (4) in the definition of open neighborhood
system , then t which define as follow :

t={UcX; VxeU INeny suchthat Nc U}
Is a topology on X such that n, is open neighborhood system for .
Proof : We must prove t satisfy the three conditions for topology.

(1) Xer (since X contains all subset of X)
dber (since,xedp = INemn,;Nco)
(F = F)=T

(2) LetU,Vert Toproof UNNVer
LetxeUNV = xeU and xeV  (def. of )
= 3 N; € ny such that N; < U and 3 N, € n, such that N, < V (def. of 1)
= 3 N3 emny suchthat N3 < N; [N,
(condition (3) from open neighborhood system )
= N;c U and N3V
= NscUNV (def. of M)
= UNVer
(3) Let Uyet ;aeA Toproof [Jeer Ut
Let XxeUuerUy = FJaeA;xelU, (def. of |J)
= INemny suchthat N c U, (since U, € t and def. of 1)
= Nc Uy € Unen Ua
= Nc UoerUo €7
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UaeA Uoc €T
. 1 Is a topology on X and from prove above we have n, V x € X is open
neighborhood system for .

Remark : From information above we have five deference method to define

topology on a nonempty set as follow :

[1] Direct definition for t by write t= {.... }.

[2] Using the family & such that the complement of this family is topology.

[3] Using the family B such that the union of all possible of elements of 3 is
topology.

[4] Using the family 4 such that the finite intersection of elements of 4 is a basis for

topology.
[5] Using the family n, ; x € X and t is the family of every sets that contain open
neighborhood for every element.

Derived Sets

Definition : Interior points and Interior set
Let (X, 1) be a topological space and A < X. A point X € A is called an interior
point of A iff there exists an open set U e t containing x such that x € U < A. The
set of all interior points of A is called the interior of A and is denoted by A° or
Int(A). i.e.,
A°={xeA:JUet;xeUcA}
xeA> @3Uet;xeUcCA
if x ¢ A°, we define
Xeg A’ oVUersuchthatxeUand Uz A

Example : Let X ={a, b, c}, t={X, ¢, {a}, {b}, {a, b}}, A={b},B={a,c}and C
= {c}. Find A°, B° and C°.

Solution :

A°={b}=A sinceb e U={b} < A={b}

B° = {a} sinceae U={a}=cB={a}

C°=¢ since the only open set contain in C is ¢.

Theorem : Let (X, 1) be a topological space and A, B — X. Then
(1) A°cA
(2) AcB = A°cB°
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(3) Aert(i.e,Aisopen) < A=A

(4) A°=[J{Uer;UcA} (this means A° is the large open set contain in A)
(5) A°’NB°=(ANB)

(6) A°UB°c(AUB)

Proof :

(1) From definition of A°

(2) Suppose that A = B to prove A° — B°

Letxe A° = FJUet;xeUcCA (def of A°)
= dUet;xelUcB (since Ac B)
= x € B° (def of B°)
(3) (=) Suppose that A is open, to prove A°=A
From (1) A°c A —-memmeeeees (1)
Letxe A = xeAcCA (since A e 1)
=>xeA° (def of A°)
S A°C A e (2)

From (1) and (2), we have A° = A
(<) Suppose that A°= A, to prove A isopen
V xXeA = JUget;xeU,cA (since A°=A)
=S UxeaUxcA A A Ukea Ux
=A= UxeA Uy
But, U, openset V X = |Jyea Uy is Open
= A isopen (by three condition of def. of top.)
(4) Toprove A°=|J{Ue1;UcA}
xeA’ 3JUer;xeUcCA (def of A°)
oxel{Uet; UcCA}
Since the element x belong to one of this sets in the union then its belong to
union LA = H{Uet; UcCA}
(5) To prove A’ B° = (A ) B)°, we must prove
(ANB)YcA°NB’ A A°NB°c(ANB)°

(ANB)cA A (ANB)cB (def. of )
= (ANB)°cA’ A~ (ANB)°cB’ (from (2) above)
= (ANB’cA°NB° e (1)

From(1) A°cA A B°cB
— A°NB°cANB
"~ A’ B’ open set containing in A B

WFUUJ_J u..u_}.zujiygm_;.vd 19



Chapter one 2023-2024 Topological Spaces

and (A (N B)° large open set containing in A B

N N A= R (N A L= ) N — )
From (1) and (2), we have (A B)°=A° B°
6) AcAUB A BcAUB (def. of )

= A°c(AUB) A B°c(AUB)
— A°UB’c (Al BY

Remarks :

[1] The converse of property (2) is not true, i.e.,
A°cB° A ACB
The following example show that :

Example : Let X ={a, b, ¢}, t={X, ¢, {b}, {c}, {b, c}}, A={a}, B={b, c}.
A°=¢pandB’={b,c}=B
Notes that, A°cB° but AzB

[2] The converse contains of property (5) is not true in general. i.e.,

(AUB)YzA°UPB’
In the previous example show that :
AlUB=X = (AUB)’=X
But, A°=¢ and B°={b,c} = A°UB°={b,c} and X & {b, c}.
[3] There exists a special cases of property (3) as follow :
Xet = X°=X and ¢er=¢"=¢ and (A°)’=A°
In a space (X, 1) the only open sets are X and ¢, so if A < X, then A° = ¢.
In a space (X, D) every subset of X is open, so ¥V A < X, then A° = A.
[4] If {x} open set in any topological space, then x is interior point of any set
containx, i.e., {x}et = xeA® V A suchthat xe A

Example : In usual topological space (R, 1), find the interior of the following sets :
A=[a,b],B=N,C=Q,D=[0, )

Solution :

Interior of any set in this example is the largest open set containing in this set.

[a, b]° = [a, b)° = (a, b]° = (a, b)° = (a, b)

N°=7°=P°=E°=0Q°=¢

Q°=1Irr’=¢

[a, 0)° = (a, o0) and (- o0, b]° = (— o0, b).

Example : In cofinite topological space (N, 1), let A = N. Find A°.
Solution : If A is open set, then A° = A. For example A = {4, 5,6, ... }
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If A is not open set, so there exists two cases either A closed set or A is not closed
set, then A° = ¢ [[since A° is open set, this means by definition 1.y that the
complement of A° is finite set and since A° < A (in general), then the complement
of A must be finite if A° = ¢. This means the interior of a set in this space either ¢ or
A.

Definition : Exterior points and Exterior set
Let (X, 1) be a topological space and A < X. A point x € A is called an exterior
point of A iff there exists an open set U e t containing x such that x e U < A°. The
set of all exterior points of A is called the exterior of A and is denoted by A* or
Ext(A). i.e.,
A'={xeA°:JUet;xecUcCA"}
xeA* @3Uet;xeUcCA®
if x ¢ A%, we define
Xe A &VUertsuchthatx e Uz A°

Remark : From definition we have A A® or A*NA=¢and A* = (A"

Example : Let X ={a, b, c}, t={X, ¢, {a}, {a, b}}, A={b}, B={a, c}and C ={c}.
Find A*, B* and C*.

Solution :

A= (A° = {a} (largest open set contain in A°)

B*=(B°)° =¢ and C*={a,b}.

Theorem : Let (X, 1) be a topological space and A, B — X. Then
1) A°NA'=¢
(2) AcB = B'cA”
(3) (AUBY'=A"NB"
(4) Ater(i.e., Aclosed) < A*=A°
(5) A*UB*c(ANBY
Proof :
(7) From definitionof A° = A°c A and A*c A°
= A°NA"cANAS
= A’NACH
= A°NA"=¢
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(8) Suppose that A< B toprove B*c A*

LetxeB* = 3Uet;Xxe UcB® (def. of B*)
= JUet;xeUcCA® (since AcB=B‘cA°)
= Xe A" (def. of B*)
o B AT

(9) Toprove (AUUB) =A"NB*
(AUB)' =((AUB))’=(A"N B’ =(A)°N (B’ = A" B
(10) (=) Suppose that A is closed or A° is open, to prove A*=A°

Atet= (A)=A° (by theorem, Ae 1< A°=A)
= A= A° (since (A%)° =A%)
(<) Suppose that A*=A° |, toprove A isclosed or A° isopen
A =A° = (A)° = A° (since (A%)° =AY
=A’er (by theorem, Ac 1< A° = A)
= A'is closed

(11) ANBcA andANBcB = A*c(ANB)X and B*c (A B)
- A*UB* c(ANB)

Example : In usual topological space (R, 1,), find the exterior of the following sets :
N’ Q! (6’ 7); {_ ﬁl ﬁ}l (_ OOJ 5]1 [_ 11 OO), [21 4]

Solution :
exterior of any set in this example is the largest open set exterior this set.
N = (N)°

R
N°=R-N=(-00,1)U(L,2)U2,3)UB,HU.......
Clear that N°is a union of open interval, so it's open set
N=(N)=R-N=(-00,1)U(1,2)U(2,3)UB, 4 U.......
Q*=¢ and (ImM)*=¢
(6, 7) =(~00,6) U (7,0) cR\[6, 7]

L
m
W
IS

6l 7]
J T

{-V2.V2¥'= (-0, ~V2) U (- V2, ¥2) U (V2, 0) = R\ {~ V2, V2}
(— o0, 5" = (5, ) and [~ 1, )" = (- 0, 1)
[2,4] =R —[2, 4] = (- o0, 2) U (4, )

Remarks :
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[1] In aspace (X, 1), every one X, ¢ are closed sets, so property (4) apply of them,
e, X*=¢, ¢ =X

[2] Inaspace (X, 1), if ¢ = A < X, then A* = ¢ because the only sets in | are X, ¢
and since A = ¢, then A= X, so the unique open set contain in A® is ¢.

[3] Inaspace (X, D), if Ac X, then A* = A° because every sets in D are open and
closed.

Example : Let X =R and t = {X, ¢, N, P} ; P is prime numbers set and P c N.
Clear that t is a topology on R and the open sets in this space are R, ¢, N, P only.
Find exterior set of the following sets :
Q, Irr, [2,6], N, Z, (—oo,1]
Solution :
Q* = ¢ since Q° = Irr and there is no open set contain in Irr except ¢.
Irr =N since (Irr)° = Q and N is large open set contain in Q.
[2, 6] = ¢ since [2, 6]° = (— oo, 2) U (B, o0) and there is no open set contain in (— oo, 2)
U (6, o) except ¢.
N*= ¢ since N°= R \Nand R \ N not contain R, N, P.
7" =¢since Z=R\Zand R\ Z not contain R, N, P.
(— o0, 17 =P since (— oo, 1]° = (1, ) and P = (1, o) while N & (1, o).

Definition : Boundary points and boundary set

Let (X, 1) be a topological space and A < X. A point x € X is called a boundary
point of A iff every open set in X containing x contains at least one point of A, and at
least one point of A°. The set of all boundary points of A is called the boundary of A

and is denoted by A” or Bd(A) or b(A) or 6(A). i.e.,
A"={xeX:VUet;xeU, UNA=d A UNA° =}
xeAlosvVUet;xeU, UNA=d A UNA =0
if x ¢ A, we define
xe Ae3IUet;xeU, UNA=¢ v UNA°=¢.

Example : Let X ={a, b, c}, t={X, ¢, {a}, {b}, {a,b}}, A={a,c},B={c}and C =
{a, b}. Find A”, B and C".

Solution :

A =2
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To find the boundary of any set we must choose every open sets for every point in X

and notes satisfy the definition or not.

a € X and the open sets contain a are X, {a}, {a, b}

notes that : {a} N A ={a} = ¢while {fa} NA°={a} N{b}=¢ = ae A"
b € X and the open sets contain a are X, {b}, {a, b}

notes that : {b} N A=¢= b ¢ A,

¢ € X and the only open set contain c is X.

notes that : X N A=dand XA =2 = ce A"
Therefore A = {c}

B’ ="

Since {a}NB={a}N{c}=¢ = aeB"

Since {b}NB={b}N{c}=¢ = beB°

Since X B#dand X B #¢p = ceB".

Therefore B® = {c}

C° = 7. by similar way we have a¢ C* ,beg C" ,ceC"
Therefore C° = {c}.

Example : Let X ={a, b, c}, t={X, ¢, {a, c}}, A={b}, B={a b}and C = {b, c}.

Find A®, B® and C".

Solution :

A’ =7

a € X and the open sets contain a are X, {a, c}

notes that : {a, c} N A=¢ = a ¢ A",

b € X and the only open set contain b is X

notes that: X N A=dand X(A°~#¢ = be A’

¢ € X and the open sets contain a are X, {a, c}

notes that : {a,c}A=¢ = c ¢ A,

Therefore A° = {b}

B" ="

Since X(1B=dand X B = ¢ also
{a,c}NB=¢ and {a,c}NB°#p = aeB"

Since X(1B=¢and X B°~#9 = beB".

Since X(1B=dand X B = ¢ also
{a,c}NB=¢ and {a,c}B°#d = ceB"

Therefore B° = {a, b, c} = X.

c=?

aeC’ ,beC’ ceC’

Qe palild) 0 g g8y Chu g D
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Therefore C°={a, b, c} = X.

Remarks :

[1]
[2]

[3]

[4]

Notes that : A°c A or A°c A® or AN A=¢por A° (A= ¢. i.e., anything
possible.

If {a} € t in any topological space (X, 1) ; a € X, then a is not boundary point
for any set A in X since ifa € A, then{a} N A°=¢and ifa ¢ A, then {a} N A
= ¢, so in this two case a ¢ A" . Therefore, we can use this idea to have a set
contain number of boundary points we determent, for example :

Example : Give an example for a subset A of topological space (X, t) contains
six boundary points.

Solution : Let X ={1,2,3,4,5,6, 7}, t={X, ¢, {1}}and let Ac X ; dp A=
{1}, then A°= {2, 3,4, 5,6, 7}.

We can generalizations this example for any numbers of boundary points.

In a space (X, I), if &= A < X, then A’ = X because the only open set in | is X
for every element in X and X | A = ¢ and X [ A° = ¢.

In a space (X, D), if A < X, then A” = ¢ because {x} € D for all x € X and by
Remake (2) every point is not boundary.

Theorem : Let (X, 1) be a topological space and A, B < X. Then

1)
(2)
3)
(4)
()
(6)

A"MNA°=¢ and A’ A*=¢

A" = (A%°

(AUB)YcA"UB"

Act o A°cA® and A"NA=¢
Alet o A°cAand A°"NA°=¢
AAetr < A'=¢

Proof :
(1) To prove A’ (N A° = ¢, suppose that A° ) A° = ¢

= IXxeA°"NA° = xeA"AxeA°

= JUert;xeUcA (def. of A®)
=S UNA=¢ (since UcA)
=>xeA contradiction !!!

L APNAY= ¢

By similar way, to proof A° (| A* = ¢, suppose that A° | A* = ¢
= IxeA°NA" = xeA’ A xeA
= JUet;xeUcA® (def. of A*)
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(2)

(3)

(4)

=UNA=¢} (since U A®)
—>xgA° contradiction 11!
L AP A=)
By definition of A, we have
xeAlosvVUet;xeU, UNA=d A UNA° =0
sSVUet;xeU, UNAY) 2d A UNA = (since A = (A%))
o x e (A%
oAM= (A9
Toprove (AlJB)’c A°UB"
xe(AUB=>VUet;xeU, UNAUB)=d A UNAUB) =4
= UNAUUNB)=d A UNA'NB)=¢
=[UNAUUNB) =4 A (UNAYN(UNB)=4¢]
=[UNAzdvUNB=d] A [UNA=dAUMNB" = ¢]
=S[UNAzdAUNA 2] v [UNB=dAUNB" 9]
—=xeA’v xeB®
—xeA’UB®
L (AUBPcA'UB®
(=) Suppose that A € 1, to prove A°c A°and A°NA=¢
Letxe A= vVUet;xeU, UNA=d A UNA =0
=> i.e., every open set contain x intersect A and A°
But, Alisopen (since A e t)and AN A°= ¢
—>XxeA =>xcA° = A" cA® and A"NA= 9.
(<) Suppose that A” = A°, to prove A is open (A 1)
To prove A is open, we must prove that A contains open nbhd for every

point in A
LetxcA = x g A° =>x g AP (since A’ c A°)
=3Uert;xeU,UNA=¢ v UNA"=¢
=>UNA=¢ (sincexeUA xeA)
=UNA"=¢
=UcCA
= Aer (since A contains open nbhd for every point in A)
. Ais open

(5) (=) Suppose that A e 1, to prove A’ c A

Letxe A=V Uet;xeU,UNA=d A UNA® = (def. of A
Since A°openset =x ¢ A°
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. every open set contains x intersect A and A®, then x cannot in A® since A°
contains open nbhd for every point in A°.
= xeA (since X= AJA
LAY CA
(<) Suppose that A” = A, to prove A is closed ( A° € 1)
we will prove A° open set i.e., A° contains open nbhd for every point in A°,

LetxcA° =>x g A =>xg A’ (since A°c A)
—3JUet;xeU,UNA=¢ (def. of boundary point and since x € A
SUcA°2¢ (since X=AJA")

So, A° contains open nbhd for every point in A°,
= Ae1 (i.e., A°open set)
= A closed set.

(6) (=) Suppose that A, A® € 1, to prove A° = ¢
.+ A open set = A” ¢ A° (By (4))
~+ Aclosed set = A" c A (By (5))
SACANA=) = Achd =A"=¢
(<) Suppose that A° = ¢, to prove A, A°ert
~AP=¢ and ¢ A and ¢ A°
=A"cA = Aer (By (5))
AcA°=Act (By (4))
= A A‘er (i.e., A'is closed and open))
Remarks :
[1] Notes that : X = A°|JA*J A® and ¢ = A° | A* (N A°, this means the sets A°,
A, A° being a partition for X, also if x € X, then x € A°orx € A*or x € A",
[2] The set A" is closed set since A’ = X \ (A° | A¥) and we know that the sets A°

and A" are open sets, therefore A° |J A* is open set, so X \ (A° |J AY) is closed
set, hence A® closed set.

Example : Let X = {1, 2, 3, 4, 5} and < be a topology on X and A < X such that A° =
{1} and A* = {2, 3}. Find A".
Solution : using previous remark ~ A° = X\ (A° [J AY)

A’ =

{1,2,3,4,5}\ {1} U {2 3}) ={4,5}

Notes that we find A® thought we unknown the topology .
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Definition : Derived set
Let (X, 1) be a topological space and A < X. A point x € X is called a cluster point
(or accumulation point or Limit point) of A iff every open set containing x contains
at least one point of A different from x. The set of all cluster points of A is called the
derived set of A and is denoted by A'. i.e.,

A={xeX:VUet;xeU A U\{X}NA=0}

or xeAo VUet;xeU A UVDINA=O
if x ¢ A, we define

xe¢Ae JUet;xeU A UVDFNA=O

Example : Let X ={a, b, c}, t={X, ¢, {a}, {a, b}, {a, c}}, A={b,c},B={c},C=
{a, b} and D = {a}. Find A, B/, C'and D'.
Solution : A'=?
To find the cluster set of any set must choose every open sets for every point in X and
notes satisfy the definition or not.
a € X and the open sets contain a are X, {a}, {a, b}, {a, c}
b € X and the open sets contain b are X, {a, b}
¢ € X and the open sets contain c are X,{a, c}
notes that : {a}\{a} NA= ¢NA=¢ = agA.
notes that : {a, b}\{b} NA= {a}NA=¢ = beA.
notes that : {a, c}\{c} NA= {a} NA=¢ = ceA.
Therefore A' = ¢
By the similar way compute the other sets such that
B'=¢, C'={b,c}, D'={b,c}.

Remarks :

[1] If {x} e 7 in any topological space (X, t), then x ¢ A’ for any subset A = X.
Since {x} € t this means {x} isopen set of X and {x}\{X} YA=d[NA=¢ S0
the definition not satisfy (in the previous example take the element a).

[2] If A = {a} singleton set, then a ¢ A’ since U \ {a} | A = ¢ (in the previous
example take the set B).

[3] Notes that A’ A and A ¢ A’ and sometime A’ A = ¢ or A’ A = ¢ (in the
previous example notes that C' ¢ C and C ¢ C'and D' D = ¢).

[4] Inaspace (X, I), if A=¢ and A contains more than one element, then A’ = X
because the only open set in | is X for every element in X and X\ {x} [ A = ¢.

[5] Inaspace (X, D), if Ac X, then A’ = ¢ because {x} e D for every x € X and
by Remake (1) every point is not cluster point for any set.
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[6] In any topological space (X, 1), we have ¢’ = ¢ since for every open set U any
for every element X isU\ {X} () ¢ = ¢.

[7] The derived set of X is change by change the topology may be X' = ¢ (remake
(5)) or may be X' ¢ or X' = X. In the previous example X' = {b, c}).

Theorem : Let (X, 1) be a topological space and A, B — X. Then

(1) AcB = A cB (In general the converse is not true)
20 (AUBY=A'UPF
3) (ANB)cA' NP (In general the equality is not true)

(4) Aet & AcA
or A isclosed < A c A
Proof :
(1) xeA= VUet;xeU A U\{XINA=0
= VUet;xeU A U\{X}NB=¢ (since Ac B)
—=xeB (def. of cluster point)
A cB
(2) Toprove (AUB)Y=A'UB
AcAUB (def.oflJ) =A cAUB) (By (1))
BcAUB (def.ofJ) =B <(AUB) (By (1))
= AUB' c(AUB) = e (1)
Let xe AUB =>xe A AxegB
=3JUet; xXeUAU\X}NA=0 A FVer; xeVAV\{X}NB=¢
(def. of cluster point)
=UNVer;xeUNVA UNWV\{XXINAUB)=¢
—x¢ (AlB)
(AUBYcA'UB s (2)
From (1) and (2), we have (A | B) = A’y B
(3) Toprove (AN B)Y cA'NB
Let xe (ANB) =>VUet;xeUAU\{XINANB)=0
(def. of cluster point)
=>VUet;xeUA[U\XINA NUNXIN B)l=d
(N distribution on ()
=>VUet; xXeUAUNXINA) =zdAUN{XIN B) =0
—=xecA AxeB (def. of cluster point)
—xeA'NB
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~(ANBYcA NB
(4) (=) Suppose that A°et, toprove A c A
To prove A/ = A, we must prove that A° < (A')°
Letx ¢ A=>xeA°
= JUert;xeU A Uc A" (def. of open set and A® € 1)
=>UcA" = UNA=¢}

=>U\{X}NA=¢ (sincex ¢ A)
—>xeA (def. of cluster point)
(<) Suppose that A’ c A, to prove A is closed, i.e., A is open
Letxe A° =>x ¢ A (def. of complement)
—x ¢ A (since A’ c A)

= FUert;xeU A U\{X}YA=0
= U\{X}cA° AxeA°
= UcA®
=A"enr
. Alisclosed

Remarks :
[1] The converse of property (1) is not true in general for example :
Example : Let X ={a, b, c}, t={X, ¢, {a}}, A={a}, B = {b}.
Notes that, A' = {b, c} and B’ ={c},soB'c A, but Bz A.
[2] The equality of property (3) is not true in general i.e., A’ B’ « (AN B) for
example :
Example : In the previous example notes that
ANB={a3N{b}=¢0 = (ANBY=¢=¢
But, A'N B ={b, c} N {c} ={c}
~ ANB «((ANBY

Definition : Closure of a set
Let (X, 1) be a topological space and A = X. The closure of aset Ais A[J A and is
denoted by A or CI(A). i.e.,

A=AUA

Example : Let X ={a, b, c}, t={X, ¢, {a, b}}, A={a, c}. Find A
Solution :

A=7?
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To find the closure set of A we must find A'.
a € X and the open sets contain a are X, {a, b},
b € X and the open sets contain b are X, {a, b}
¢ € X and the open set contain c is X

notes that : {a, b}\ {a} N A= {b}NA=¢ = ae A
notes that : {a, b}\{b} YA={a} A= ¢ and

X\{b}NA={ac}NA=d = beA

notes that : X\ {c} NA= {a, b} NA=d = ceA.
Therefore A'={b, c}

L A=AUA ={actU{b c}={a b, c}=X
Theorem : Let (X, 1) be a topological space and A, B < X. Then
(1) Ac A

(2) AcB = AcB (In general the converse is not true)

B) A={FcX:FetaAcF}(i.e., A issmallest closed set contains A)
4 AUB=AUB

(5) A(\Bc ANB (In general the equality is not true)

(6) Aert (i.e, Aisclosed) < A=A

(7) A= A

Proof :

(1) ~A=AUA (def.of A) = AcA
(2) Suppose that Ac B, toprove Ac B
+AcB = A cB (property of cluster set)
= AcB and A'cB
= AUA cB'UB
= Ac B (def. of A)
(3) Toprove, A=n{FcX:FetrnAcF}
Firstwe prove, Ac({FcX:FFetAACF}
LetxeA=xeAUJA (def. of A)
—SxecAvxeA
if XeA=>Xe AcF=xeFVFcX;Fer
=>xe({FcX:FFetAAcCF}
if xeAl
suppose X ¢ (fF =X :FfetAAcCF}
dJFe® ;xe¢F
— X € F* = U open set containing X.
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wxeA = ANF\{X}=0
=ANF =06

but AcF = ANF'=¢ C! contradiction.
Xe{FcX:FFetAnACF}

SACFeX:FFetAACF} e (1)
Second we prove, ([{Fc X :FFetAAcCF}cA
Letx e N{F < X:F°et A AcF}andsuppose x ¢ A
=xegAlJA (sinceA=AJA)
SXxeA A xghA
=3JUert;xeU A U\{X}NYA=¢

=>UNA=0¢ (sincex ¢ A)

=Ac U’ (since UNA=9)

But U° is closed (since U open)

=>xeU° (sincexe{Fc X:FfetAACF}) (say U°=F)
—XxeU andx e U° contradiction !

=XeA

SHF X FFetAAcCF}cA s (2)

From (1) and (2), wehave A=({{FcX:FFetAAcCF}
(4) Toprove AUB = AUUB
First we prove, AUB c A|B
From (1), AcA and Bc B = A|UBcAU B
From (5), A, B are closed sets
- AUB isclosed set contain A|JB (i.e, AUBcAB)
but A|JB is smallest closed set contain A |JB (i.e., AlJBcAUB).
= AUBc AUB e (1)
Now, we prove, A|JBc A
~AcAlUBandBc AU
From(2),A < A|UB and Bc A|UB
= AUJUBc AUB = e (2)
From (1) and (2), we have AJB = A|UB
(5) Toprove, ANB<ANB

UB
B
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(6)

[4]

[5]
[6]

[7]

Toprove, Aet & A=A
Suppose that A € 1, to prove A=A

AcA (from (1)) e (1)
+Act= Aisclosedand also Ac A and A' = A (by theorem)
S AUA cA
>AcA e )

Hence, from (1) and (2) we have A=A
Suppose that A = A, to prove A°e 1 (i.e., to prove A is closed set)
~A=AandAisclosed = Aisclosed = A‘enr.

(7) To prove A= A
Aisclosed & A=A (by (6))
A isclosed < A=A (by (6))
Remarks :
[1] We can using property (5) to find closure set for any set in topological space
instead of definition of closure set such that A is smallest closed set contains A.
[2] From property (6) and since X, ¢ are closed sets then X =X and ¢ = ¢.
[3] The converse of property (2) is not true in general for example :

Example : Let X ={a, b, c}, t={X, ¢, {a}, {a, b}}, A={b, c} and B = {a, b}.
Notes that # = {X, ¢, {b, c}, {c}}, then

A={b,c}=Aand B=X

— Ac B but AgB.

The equality of property (4) is not true in general i.e, A(NB ¢« AB for
example :

Example : In the usual topology (R, ty), let A=[1, 2] and B = (2, 3)

Clea, ANB=¢ = ANB=¢=¢ = ANB=¢

But, ANB=[1,2]N][2 3]={2}

ANBz ANB.Hence, A(NB= ANB

In a space (X, 1), if ¢ = A c X, then A =X since A is closed set contain A and
the only closed set in | contain A is X.

In a space (X, D), every subsets of X is open and closed in the sometime, then A
= A for all A < X (by property (6) ).

In the usual topological space (R, t,), if A is closed interval or open interval or
half closed (open) as follow : A =[a, b]or A=(a, b) or A=[a, b) or A =(a, b],
then A = [a, b] since [a, b] is smallest closed set contains A.
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[8]

If A is a discreet set in real number (finite or infinit), then A = A since A is
closed set for example :

A=N, A=0, A=P, A=E, A={1,2,3}, A={+20+2}

Either the rational numbers Q and irrational numbers, then @ =R and Irr = R
since the only closed set in t, contain Q and Irr is R.

In the topological space (N, tes), If A is finite set, then A is closed (def. of 7t ),
so A = A.

If A is infinite, then A = N'since A closed set contain A and the only closed set in
Teof CONtAIN A IS N.

Definition : Dense set
Let (X, t) be a topological space. Then A < X is called dense setin X iff A = X.

Examples :

[1] In the usual topological space (R, t.), the rational numbers Q and irrational
numbers are dense in R since Q =R and Irr =R.

[2] In the cofinite topological space (N, s, every infinite set is dense in N, for
example if A={5, 10, 15, ...}, then A=N.

[3] Inaspace (X, I), every nonempty subset of X is dense.

[4] Inaspace (X, D), the only dense set is X.

[5] In every topological space (X, t) is X dense set always. So, every topological

space contain at least one dense set.

Topological Space Generated by Metric Space

Definition : Metric & Metric Space
Let X # ¢ a functiond : XxX — R is called a metric on X if :

(1)
(2)
(3)
(4)

diX,y) =0V x,ye X

dix,y) =d(y,x) VX, yeX
dix,y)=0<=x=yVXx,yeX
dix,y) +d(y,z)>d(x,2) VX,y,ze X

The pair (X, d) is called a metric space.

Definition : Open Ball
Let (X, d) be a metric space and let x € X, € > 0, the set
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B:(X) = {y € X; d(y, X) <&}
Is called an open ball in X with center x and radius «.

Definition : Open Set in Metric Space
Let (X, d) be a metric space and let U — X, U is said to be open in (X, d) if Vxe U 3

£>0;B,(x) c U.

Proposition : Let (X, d) be a metric space and U < X, U is open in X iff U is the
union of open balls.

Proposition : Let (X, d) be a metric space and let tq be the family of all open sets in
(X, d).i.e., tg={U < X; Uisopenin (X, d)}. Then 4 is a topological space on X.
Proof :
(1) vxeX3de>0,B(X)cX=Xery.
dertgsinceAxed.
(2) LetU,Ver,toproveU[VeTt.
LetxeUNV=xeUaxeV
= d g >0and g, > 0 such that B,;(X) < U A B(X) < V.
Let € = min{ey, €}
= Bi(X) = Ba(X) N B(X) cUN V.
=>UNVer.
(3) LetUyetq VaeA,toprove Upes Uq € 14
Let X € Uger Upo = T ape A ; X e Uy
= J &> 0 such that B,(x) < Ug.
but Ugo < Uoen Ua
=B:(X) < Uger U
= Jger Ug € 14 -
So 14 is a topology on X induced by d.

Example : Let X=R and d =| |, then (X, d) = (R, | |) is a metric space.
Now, let x € X, &€ >0 then
B.)={yeR;|y—x|<e}
={yeR;-e<y-x<eg}
={yeR ;x—eg<y<x+eg}
= (X —¢&, X + €) open interval
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So the open balls here is an open interval, and hence the open sets is the union of
open intervals.
I.e., g ={U < R ; U = union of open intervals} = 1,

We shall denote this topology by t, = the usual topology on R = the set of real.
Note that R € t, and R = (—o, o0) which is an open interval and ¢ = (a, a) ; a € R.

Example : Which of the following subsets of R is open (closed) in (R,t,) ??
(-1,1), (0,1) U (10, 20), N, [2, 3], [-1/2, 3), Q, Irr, {3, 4, 5}.

Solution :

(-1, 1) and (0, 1) | (10, 20) are open but not closed.

N is not open , but closed

[2, 3] and {3, 4, 5} are closed but not open.

[-1/2, 3), @ and Irr are not open and not closed.

Remark : We can get a topological space from any metric space, but we cannot get a
metric space from any topological space.

Definition : (Metrizable Space)

The topological space (X, 1) is called Metrizable iff there exists a metric d for X
such that the topology t4 induced by t (i.e, T = 14). Otherwise, X is said to be
nonmeterizable.

Remark : (X, D) is a metrizable topological space.

i.e., There is a metric d on X such that Tty = D.

_ _ (1 if x=y
Whered.XxX—>[R,d(x,y)—{0 %y
B/(X)={x}ifr<1

{X}E’Cd VxeX=1=D.

Example : If X ={1, 2, 3}, T topology on X, (X, 1) is metrizable = t =D.
Supposethat 3d: XxX >R ;1g=1
=d(1,1)=d(2,2)=d(3,3)=0

d(1,2)=d(2,1)=C;
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d(1,3)=d(3,1)=C,
d(2,3) =d(3, 2) =C;
B.(1) = {1} if e <min {C,, C,}
B.(2) = {2} if e <min {Cy, C3}
B.(3) = {3} if e <min {C,, C3}
t=D

Therefore, every topology (t) on X not discrete (D) is space not generated by metric.

A:\.;A‘)muu‘)_.)
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Chapter Two : Continuity and Derived Topological Spaces

Definition : Continuous & discontinuous Functions
Let (X, 1) and (Y, t') be two topological spaces and f : (X, 1) — (Y, t'). The function
f is called continuous if the inverse image for any open set in Y is an open set in X.
I.e.,

f: (X, 1) > (Y, t) is continuous < f*(V)et VVer
and the function f is called discontinuous if there exist an open set in Y, but inverse
Image is not open in X. i.e.,

f is discontinuous < IVert A fHV)er

Example : Let X ={1, 2, 3}, t = {X, ¢, {1}}, Y ={a, b} and t' = {Y, ¢, {b}}
(1) Definef: (X, 1) > (Y, 1) ; (1) =D, f(2) =1(3) =a. Isfcontinuous??
The open setsin Y are Y, ¢, {b}. Now take the inverse image of this sets.
Yet = f(Y)=Xert thesetofall elementin X itsimage in Y
bet = fHd)=det thesetofall elementin ¢ its image in ¢
{bret = f{bY) ={xe X ;f(x)=b}={1} e
the set of all element in X its image in {b}
Therefore, the inverse image of every element in t' is element in t, hence f is
continuous.
(2) Defineg: (X, 7)—> (Y, 1) ; 9(1)=a, 9(2) =9(3)=b. Isgcontinuous??
Yet = g(Y)=Xer
pet = gl(P)=¢er
{o}et = g*{pH={2,3} e
Therefore, fis discontinuous.
(3) Defineh: (X, t)—>(Y,7) ; h(1)=h(2)=h(3)=a. Ish continuous??
Yet = h’(Y)=Xer
bet = h(p)=der
{b}et = h*{b}) =det since there is no element its image is b
Therefore, f is continuous.

Remark : Always the inverse image of Y is X and the inverse image of ¢ is ¢.

Example : Let X ={a, b, c}, t={X, ¢, {b, c}}, Y ={2, 3} and 7' = {, ¢, {2}}. Find
all continuous function define from (X, 7) to (Y, 1).
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Solution : There are 2° = 8 from difference functions from X to Y which are some of
them continuous and some others of them discontinuous . Now we introduce the
figure for all functions from X to Y and discuses there continuous.

f
x f]_ >y X 2 >Y
a a
b b
3 3
C C

f fg
X GV X
a;
"" b
C
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From remark above f7! (Y)=Xandf ™' (¢)=¢,i=1,2,3,4,5,6,7,8.
f, is continuous, since f;* ({2}) ={a, b,c}=Xe .

f, is continuous, since f; 1 ({2})=¢ e

f5 is discontinuous, since f;* ({2}) = {a, b} ¢ .

f, is discontinuous, since f;1 ({2}) ={c} ¢

f5 is discontinuous, since fz* ({2}) ={a, c} ¢ .

fg is discontinuous, since ;! ({2})={b} ¢ .

f, is continuous, since ;! ({2}) ={b, c} e~.

fg is discontinuous, since fg! ({2})={a} ¢« .

Therefore, the continuous functions in this example are fy, 5, f; only.

Remark : There are special cases of continuous functions.
[1] Every constant function from a space (X, t) to a space (Y, t') is continuous. i.e.,
f:0X1)>(Y,1);f(X)=c VxeX andc=constantin.
To show that f is continuous.
LetVet = Visopenin, then

1 _ (X if ceV
f (V)‘{w if cgV

= X, ¢ € T = fiscontinuous.

[2] If ©' =1, then the function f : (X, ©) — (Y, I) is continuous for any set Y and any
topological space (X, 7). i.e., | ={Y, ¢}and f(Y)=Xe1,f(¢)=¢ e .
Special case : f: (X, I) = (Y, 1) is continues
And the function f : (X, 1) — (Y, 1') ; " # | is discontinuous in general for
example :

f-R, D> R, 1) ; f(X)=x
f is discontinuous since (0, 1) € 7, and f((0, 1)) = (0, 1) ¢ | = {R, ¢}.

[3] If t =D, then the function f : (X, D) — (Y, t') is continuous for any set X and
any topological space (Y, t') and for any function f since, if V e ', then f (V)
— X this means f (V) e IP(X), but D = IP(X) and this implies f (V) e D.
Therefore f is continuous.

Special case : f: (X, D) — (Y, D) is continuous
And the function f : (X, 1) — (Y, D) ; t # D is discontinuous in general for
example :
f:R,t)—>R,D) ; f(x)=x
f is discontinuous since {1} € D and f *({1}) = {1} ¢ ..
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[4]

Notes that the function f: (X, D) — (Y, I) is continuous always for any set X

and any set Y since its add the remark [2] and [3] such that t =D and t' = I.

Every identity function from a spaces to the same space is continuous. i.e.,
f:X1)>0K1 ; fx)=x vxeX

is continuous function since f (V) = V for any open set V in (X, 1) and this

implies f (V) is open in (X, 1)

notes that the identity function from a space to another space may be continuous

and its clear in example in remark [2] and [3] above.

Theorem : If f: (X, 1) > (Y, t)and g: (Y, t) > (Z, ") are both continuous
functions, then the composition gof : (X, t) — (Z, t) is continuous.

Proof :
LetWet" = g'(W)eT (since g is continuous)
notes that g*(w) c Y

= fHg (W) e (since f is continuous)
= (fFrogM)(W) e 1 (by composition of function)
= (gof) ' (W) et (since (gof)'=flog™t)

.. gof is continuous. The figure below clear this theorem.

X f > Y 2 > 7

(gof ) (W)

=f (g (W)

Remake : The composition of finite number of continuous functions is continuous.

I.e.,

the composition of three or five or hundred continuous functions is continuous.

For example if f, g, h, k are continuous, then kohogof is continuous .... etc.

WFUUJ_J u..u_}.zujiygm_;.vd 41



Chapter Two 2023-2024 Continuity and Derived Topological Spaces

Now we introduce the definition of continuous function at a point :

Definition : Continuous at a Point
Let (X, t) and (Y, t') be topological spaces and f : (X, t) — (Y, ). the function f is
called continuous at a point X, € X if the inverse image for any open nbd for f(x,) in
Y contains an open nbd for X, in X. i.e.,

fis continuous atxo e X = VVert f(x)eVIUet;xecUAUcf(V)
The following figure clear this definition :

f

v
_<

f (Xo)

Such that V is an open nbd for f(xo) in Y and f (V) is inverse image for V and U is
an open nbd for x, in X contains in f (V).

Remark : If f is continuous function. Then its continuous at every point in the
domain. Also, if fis continuous at every point in the domain, then its continuous.
Notes that, if f is continuous at a point in the domain, then its discontinuous in
general and the following example show that :

Example : Let X ={a, b, c}, t={X, ¢, {a}}, Y = {1, 2} and t' = {, ¢, {1}}. Define
f as follow :

f:(X,1)> (Y, 1) ; f(a)="f(b)=2,f(c)=1
notes that f is discontinuous since {1} e ©', but f *({1}) = {c} ¢ .
On the other hand, thought that f is discontinuous in general, but its continuous at a
point a as follow :
f(a) = 2 and the open nbd of 2 is Y only and f (YY) = X and X is an open nbd
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There are several characterizations of continuous functions and, hence, that any
one of them may be used to show continuity of a function. These are given in the next
theorem :

Theorem : Let f: (X, t) = (Y, t') be a function. Then f is continuous iff satisfy one
of the following properties :

(1) fYF)eF Vv FeF ;¥ family of closed sets in X and ¥ family of closed sets
In Y i.e., The inverse image of every closed set in Y is closed in X.
(2) f'(B)er V B'ep ; P'isabasisfor .
I.e., The inverse image of every element in any basis for t' is open set in X.
(3) fY(SYetr V S'es ; &isasubbasis for T
I.e., The inverse image of every element in any subbasis for t' is open set in X.
(4) f'l(Ny) et V yeY V Nyemny; nyisafamily of open nbd for a pointy in
Y.
I.e., The inverse image of every open nbd for any element Y is open set in X.
5) f71(B) < f(B) ; BcY.
6 (B < (f*(B)° ; BcY.
Proof :
(1) To prove, fis continuous < X —f*(F)et V Y-Fer7
(=) Suppose that fis cont. , to prove X —f*(F)et V Y-Fer
Let FclosedsetinY = Y —FopensetinyY (def. of closed set)

=fYY-F)er (since f is continuous)
But, f (Y — F) = f}(Y) - f(F)
=X —f(F) (since f1(Y) = X)

fiY-F et = X-f'(Fer
(<) Suppose that X —f*(F)et V Y —F e, to prove f is continuous
LetVopensetinYie,Vert
.. Y —V closed set in Y since V open
= f(Y - V) closed set in X (by hypothesis )
=X-fYY-V)er
But, X—f(Y -V) =X -[f'(Y)-f (V)] =X-[X-f' V)] =fV)
=fli(V)er
.. fis continuous.
(2) To prove, fis continuous < f*(B)et VB' ef' ; B'isa basis for t'.
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(=) Suppose that f is continuous , to prove f*(BYet V B'ef'
Let B' be a base of t'and B' € f3'
=B'ert (since B' < 1)
=f'B)er (since f is continuous)
=f'(B)et V B'ef
(<) Suppose that f*(B'Y et vV B'e ', to prove f is continuous
LetVopensetinYie,Vert
= V=UiB; ; B;ep (def. of basis)
= (V) =f*(UiB) = Ui f*(B)
= Ui f'(B;) et (by third condition of def. of top.)
=fi(V)er (since (V) =f"(UB)=U f(B))
.. fis continuous
(3) To prove, fis continuous < f(S) et Vv S' €4 ;4 isasubbasis for 7.
(=) Suppose that f is continuous , to prove f*(S)et V S'e 4
Let 4' be a subbase of t'and S' € 4'
=S'eT (since ' )
—=f’S)enr (since f is continuous)
—=f’S)etr V S'eb
(<) Suppose that f*(S) et ¥ S'e 4, to prove f is continuous
LetVopensetinYie,Vert

=V =Ui(Njz, S]f) (def. of basis and subbasis)
= (V) = (Ui (N} S))
=Ui fH (N, S)) (inverse image distribution on union)

=Ui (Nj%4 f=1( S]f)) (inverse image distribution on intersection)
SfTN(S)er = fTI(S)) openin X

= AL, f1(S) et (by second condition of def. of top.)
= Ui (N, f72(S) e (by third condition of def. of top.)
=fli(V)er (since f(V) = Ui (NJ=, F72(S)))

. Tis continuous,

(4) To prove, fis continuous < f*'(N,)et V yeY V Nyen,
(=) Suppose that f is continuous, to prove f*'(Ny) et V yeY V Nyen,
Let Nyeny
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()

(6)

" My ls open nbd system for y, then n, is a family of open set, therefore
= Nyer
= f'l(Ny) €T (since f is continuous)
(<) Suppose that f'l(Ny) etVyeY V Nyen,,toprove fis continuous
LetVopensetinYie,Vert

=V = Uyev Ny 1.6, V = union of a family of open sets for every
point in V by using the fifth condition of def. of 0.n.s
(Uet < INyeny;NycU V yel)
V) = T Uyer Ny) = Uyev TH(Ny)  (inverse image distribution on union)

Ny et (by hypothesis )
= Uy T (Ny) €1 (by third condition of def. of top.)
=f'(V)er (since (F*(V) = Uyev F1(Ny))

.. fis continuous.
To prove, f is continuous < f~1(B) < f'(B) ; BcY.

(=) Suppose that f is continuous , to prove f~1(B) < f*(B) ; Bc.
Let BcY =Bc B = f!(B)c f(B)

. Bclosed setin Y by (1) f*(B) closed set in X

S HFcX:FFet A fYB)cF}<f*(B)
since f~1(B) is intersection of all closed sets that contain f *(B) and f*(B) is
one of the closed set that contain f *(B), then
— F1(B)  f(B) (since ({F : F et » £4B) c F} = -1(B))
(<) Suppose that f-1(B) < f(B) ; Bc Y., to prove fis continuous.
We will use part (1) in this theorem

Let F closed set in Y, to prove f *(F) closed in X i.e., f~1(F) = f(F).
fYF) c f-1(F) CIY N P — (1)

- Fclosed = F= F = f'(F) =f™(F)

By hypnoses, f~1(F) < f(F)=f(F)

— I cfYF) e )

From (1) and (2) we have f=1(F) = f *(F)

. fY(F) closed in X.

.. Tis continuous.
To prove, f is continuous < f*(B°) < (f'(B))° : BcY.

(=) Suppose that f is continuous , to prove f(B°) < (f*(B))° ; BcY
LetBcY =B°cB =f*(B° cf'(B)
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B°isopeninY = f*(B° isopenin X (since fis continuous)
f'B)c {OcX;0et,0<=f"(B)}
since (f *(B))° is union of all open sets that contain in f *(B) and f *(B°) is one
of the open set that contain in f *(B), then

= f(B°) < (f(B))° (since U{Oc=X;0e1,0cf*(B)}=(f'(B))°)
(<) Suppose that f*(B°) < (f*(B))° ; BcY, to prove fis continuous.
Let VV opensetin Y i.e., V et to prove f (V) open in X i.e., f}(V) = (f(V))°.
VeV = ((FIV)° < fHY) e (1)
~Vopen=V=V°= f1(V)=f(V°)
By hypnoses, f (V) = f1(V°) < (f}(V))°
=i V) cfi(v) e 2)
From (1) and (2) we have f (V) = (f *(V))°
. (V) open in X
. Tis continuous.

Remark : The six characterizations in the previous theorem for definition of
continuity is not unique, but there are another characterizations for example :

f is continuous < f(A)c f(A) ; AcX.
f is continuous < (f(A))° < f(A°) ; AcX.

Remarks :
[1] Notes that, if f: (X, 1) — (Y, 1) is continuous function, then it's not necessary

[2]

that the direct image of open set in X isopensetinY.i.e.,

Uet A& f(U)et (ingeneral not true)

Vet = fHV)er (istrue)
This two statements is difference and the following example show this :
Example : Letf: (R, t,) = (R, I) be a function, then f is continuous (see, page
37). Now we will show that the direct image of open set is not open in general :
frR,1)>R D ;fX)=x V xeR
Let U=(0,1)opensetin (R, t,) and f(U)=U
= f(U)=Uisnotopenin (R, 1) sinceU=(0,1) ¢ | ={R, ¢}
So, weshowthatUet A f(U) ¢ 1.

Notes that, if f: (X, t) — (Y, t) is continuous function, then it's not necessary
that the direct image of closed set in X is closed setin Y. i.e.,
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Fret & (f(F)er (in general not true)
FFet = (f*'F)et (istrue)
This two statements is difference and the following example show this :
Example : In the previous example :
f:R,))>R, 1) ; f(x)=x V xeR, f iscontinuous
Let F =10, 1] closed set in (R, ty)
= f(F) = Fisnotclosed in (R, 1) since F° =10, 1] ¢ I = {R, ¢}
So, we show that [0, 1]°e 1, A (f([0, 1])° =[O0, 1]° ¢ I.

Now we will introduce a new definitions for functions satisfy the condition [1]
and [2] in the previous remark as follows :

Definition : Open & Closed Functions

Let f: (X, 1) — (Y, t') be a function.

(1) The function f is called open if the direct image for any open set in X is open set
inY.i.e.,

f:(X,1)> (Y, 1) isopen function <& VUet = f(U)er
f: (X, 1) > (Y, 1) isnotopen function < FUet A f(U) g1
(2) The function f is called closed if the direct image for any closed set in X is
closed setin Y. i.e.,

f: (X, 1) > (Y, 1) isclosed function & VF et = (f(F)‘et
f: (X, 1) = (Y, 1) isnotclosed function < IF et A (f(F) &1

Remark : There are no relation between the concepts continuous, open, closed
functions and the following table show that :

f continuous function | f open function | f closed function
T T T

i i s N s N
i I s I
e I A n e N e IR
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Such that T = True (i.e., the function is satisfy) and F = False (i.e., the function is not
satisfy). Also, there are eight probability may be taken the function for example (T F
T) means that the function f is continuous, not open , closed. Therefore we will
introduce an eight examples satisfy this probability :

Example (1) : (T T T) means the function f is continuous, open , closed.
Define the identity functionf: (X, 7) > (X, 1) ; f(X)=x VxeX,
f is continuous since V 'V € tinrang X = f(V) = V e tindomain X.

fisopensince V U € 1 open indomain X = f(U) =U is open in rang X.
fis closed since V F closed in domain X = f(F) = Fis closed in rang X.

Example (2) : (T T F) means the function f is continuous, open , not closed.

Let X={1,2,3} t={X ¢, {1}}, Y ={a b, c}and T ={Y, ¢, {a}}

Define the constant function f: (X, t) > (Y, 1) ; f(1)=f(2) =f(3) =a

f is continuous since it is constant.

fisopensince: X et =>fX)={a} et det =>f(¢)=detand{l} et =
f{1}) ={a} e (ie, VUet = fU)et).

f is not closed since 3 closed set {2, 3} € # (since {2, 3}* = {1} 1)

But, f({2, 3}) ={a} ¢ ¥ 'since {a}*={b,c} ¢ '

Example (3) : (T F T) means the function f is continuous, not open , closed.

Let X ={1, 2,3} t={X, ¢, {1}}, Y ={a, b, c}and t' = {Y, ¢, {a, b}}

Define the constant function f: (X, t) —» (Y, 1") ; f(1) =1(2) =1(3) =c

f is continuous since it is constant.

f is not open since 3 open set {1} € v ,but f({1}) ={c} ¢ 7.

f is closed since : The family of closed sets in X is & = {X, ¢, {2, 3}} and the family
of closed setin Y is F ' ={Y, ¢, {c}}, then

f(X) = {c}, f(6) = ¢, F{2, 3D ={c} (e, V FeF = f(F) e F").

Example (4) : (F T T) means the function f is not continuous, open , closed.

Define the functionf: (R, 1) > (R, 7)) ; f{(X)=x VxeR

f is not continuous since 3 (0, 1) open in (R, 1), but f *((0, 1)) = (0, 1) not open in
R, 1.

f is open and closed since the only open and closed sets in (R, 1) are R, ¢ and f(R) =R
and f(¢) = ¢ (i.e., the direct image of open (rep., closed) set is open (rep., closed) set )
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Example (5) : (T F F) means the function f is continuous, not open , not closed.
Define the functionf: (R, 7)) > R, 1) ; f(x)=x V¥V xeR

f is continuous since the rang is (R, 1) (see, page 37).

f is not open since 3 open set (0, 1) in (R, ), but f((0, 1)) = (0, 1) is not open in (R,
).

f is not closed since 3 closed set {0} in (R, 1), but f({0}) = {0} is not closed in (R, I).

Example (6) : (F T F) means the function f is not continuous, open , not closed.

Let X={1,2,3} t={X ¢, {1}}, Y={a b, c}and ' ={Y, ¢, {a}, {a, b}}

Define the function f: (X, t) > (Y, 1) ; f(1)=1(2)=a,f(3)=b

f is not continuous since 3 open set {a} € t' but f*({a}) ={1,2} ¢ .
fisopensince: X et =>f(X)={a, b} et det =f(d)=detand{l} et =
f{1}) ={a} e (ie, VUect = fU)er1).

f is not closed since 3 closed set {2, 3} € ¥ (since {2, 3}° = {1} € 1), but, f({2, 3}) =
{a, b} ¢ F 'since {a, b} = {c} ¢ 7.

Example (7) : (F F T) means the function f is not continuous, not open , closed.

Let X ={1, 2,3}, t={X, ¢, {1}}, Y ={a, b, c}and ' = {V, ¢, {c}, {b, c}}

Define the function f: (X, t) > (Y, 1) ; f(1)=1(2)=a,f(3)=b

f is not continuous since 3 open set {b, c} € t' ,but f'({b, c}) ={3} ¢ t.

fis not open since 3 openset {1} € v ,but f({1}) ={a} ¢ 7.

f is closed since : The family of closed sets in X is & = {X, ¢, {2, 3}} and the family
of closed setin Y is #'={Y, ¢, {a, b}, {a}}, then

f(X) ={a, b}, f(o) =9, f({2,3})={a, b} (ie., VFeF = f(F) e F).

Example (8) : (F F F) means the function f is not continuous, not open , not closed.
Let X ={1,2,3} t={X ¢, {1}}, Y ={a, b, c}and t' = {V, ¢, {a}}

Define the function f: (X, t) > (Y, 1) ; (1) =1f(2) =4, f(3) =D

f is not continuous since 3 open set {a} € t' but f*{a})={1,2} ¢ .

f is not open since 3 openset X € T ,but f(X) ={a, b} ¢ 7.

f is not closed since 3 closed set {2, 3} € F (since {2, 3}° = {1} € 1), but, f({2, 3}) =
{a, b} ¢ F'since {a, b} ={c} ¢ 7.
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Remark : The open function is closed and the closed function is open if the function
Is bijective (injective and surjective). i.e.,
f is bijective function = (f open < f closed)
f is bijective function = (f not open < f not closed)
This means if we wanted to get a function is open not closed or closed not open must
be define a function not bijection (not injective or not surjective) since if we define a
bijective function then it's either open and closed or not open and not closed.

Remark : We talking about the function f : (X, t) — (Y, ) is continuous or
discontinuous. Now we will question if the function f is bijective and continuous this
implies that ! is continuous (i.e., if f™* exists function and f is continuous, then that
implies to f * is continuous ?? or conversaly). The answer of this question is no since
we can find a continuous function but your inverse is not continuous and the
following example show that :

Example : Define the functionf: (R, 1)) > (R, 1) ; f(x)=x VxeR
Notes that f is continuous since the rang is (R, I) (see, page 37).

Notes that f is bijective , then f ™ is exists function and

f1: (R, 1) > (R, 1), but this function not continuous since

3 open set (0, 1) in (R, 1), but (F)™ ((0, 1)) = (0, 1) is not open in (R, I).

Now the question : Is there are functions is continuous and there inverse is
continuous two ??. The answer is yes and the following definition introduce this
functions :

Definition : Homeomorphism Functions
Let f: (X, t) = (Y, 1') be a function. The function f is called homeomorphism if its
injective, surjective, continuous and f ™ continuous. i.e.,
f: (X, 1) > (Y, t) is homeomorphism < f 1-1, onto, continuous and f* continuous
f: (X, 1) > (Y, 1) is not homeomorphism <

f not 1-1 v f not onto v f not continuous v f ™ not continuous

Remark : Clear that every homeomorphism function is continuous, but the converse
Is not true for example :

frR,1)>R D ; fX)=x V xeX
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The function f is1-1, onto, continuous, but f * is not continuous. Therefore f is not
homeomorphism.

Remark : If f: (X, t) — (Y, t') is homeomorphism function, this means :
FHYU) et Vv U et (def of continuity), but (f*)*(U) = f(U) (since f bijective), so
we can said
fis continuous < f(U)et V Uer
but this is the definition of open function, so if f * is continuous this means f is open
and vise versa with property that f is bijective. i.e.,
f* is continuous < f isopen
if fis bijective (by previous remark, p. 47, f isopen < f isclosed), so that
f1is continuous < fisopen < fisclosed

I.e., the three concepts are equivalent and we can replace the definition of
homeomorphism as follow :

f is homeomorphism < f is 1-1, onto, continuous and open.

f is homeomorphism < f is 1-1, onto, continuous and closed.
such that we replace the statement f ™ is continuous in definition of homeomorphism
by either f open function or f closed function.

Remarks :

[1] If f is homeomorphism function, then f™ is also homeomorphism function.
since fis 1-1 and onto, then f ' is 1-1 and onto
since f is homeomorphism, then f  is continuous, also, f = (f )™ is continuous
Therefore, f* is homeomorphism function.

[2] Iff: (X, 1) > (Y,t)andg: (Y, 1) > (Z, ") are both homeomorphism
functions, then the composition gof : (X, t) — (Z, ") is homeomorphism.
since f and g are 1-1 and onto, then gof is 1-1 and onto
since f and g are continuous, then gof is continuous (by previous theorem)
since fand g are homeomorphism, then f * and g ™ are continuous also f *og™ is
continuous (by previous theorem)
but, f *og™ = (gof) * is continuous.

Therefore, gof is homeomorphism function.
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Definition : Homeomorphic Topologies
We called two topological spaces (X, t) and (Y, t') are homeomorphic if there exists
a homeomorphism function from (X, 1) to (Y, ') and denoted by (X, t) = (Y, t') or
(Y, )z (X, 7). le,

(X, 1) 2 (Y, ') < 3 homeomorphism function f: (X, 7) — (Y, 1)

Theorem : The relation = is an equivalent relation on the family of topological
spaces.
Proof : We must prove the relation = is reflexive, symmetric and transitive.

1)

2)

(3)

To prove = is reflexive. i.e., (X, 1) = (X, 1) ??

Define the identity functionf: (X, 1) > (X, 1) ; f(X)=x VvV XxeX
Clear that f is 1-1, onto, continuous and f = f* so that f * is continuous
Therefore, = is reflexive.

To prove = issymmetric. i.e., if (X, 1) = (Y, 1) = (Y, 1) = (X 1) ??
(X 1)z (Y, 1) = 3Fhomo. funct. f: (X, 1) = (Y, 1)

by remark [1] above, we have f ™ is homo. funct. and

fh 7, t)> X1 = (Y, 9)=Xr1)

Therefore, = is symmetric.

To prove zis transitive. i.e., iIf (X, 1) =(Y, )= (Z, ") = (X, 1) = (Z,1") ??
(X 1)z (Y, 1) = 3Fhomo. funct. f: (X, t) = (Y, ') and

(Y, )= (Z,v") = 3 homo.funct.g: (Y, 1) —> (Z, ") and

by remark [2] above, we have gof is homo. funct. and

gof :(X,7)—> (1) = X1z

Therefore, = is transitive.

Theorem :

1)

The bijective function f: (X, 1) — (Y, t') is homeomorphism iff
f~1(B) = f'(B):BCY.

(2) The bijective function f : (X, t) = (Y, t') is homeomorphism iff
f4(B°) = (f*(B))’;BcY.

Proof :

(1) (<) Suppose that f-1(B) = f*(B), to prove f Home.,

.+ fis bij., we must prove f is cont. and f* is cont.
f1(B) = f'(B) = f~1(B) < f'(B) = f iscont.

(by theory fis cont < f~1(B) < f'(B); BcY)
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and - f-1(B) = f'(B) = f'(B)< f~1(B) = f* iscont.
(by theory fis cont < f(B) < f(B) ; B< Xand f replace by f™)
- T is Home.
(=) Suppose that f is Home., to prove f-1(B) = f(B)
-+ f ishome. = f is cont. and ™ is cont.
= f~-1(B) < f*(B) and f*(B) —f~1(B)
= f-1(B) = f*(B)
(2) (<) Suppose that f*(B°) = (f(B))°, to prove f Home.,
-+ f is bij., we must prove f is cont. and f* is cont.
- fYB% = (F'(B))° = f(B°) < (F'(B))° = f iscont.
(by theory fis cont < f*(B°) < (f*(B))°; BcY)
and "~ f1(B°) = (f'(B))° = (f'(B))°c f(B°) = f™* iscont.
(by theory fis cont < (f(B))° < f(B°) ; B< Xand f replace by f™)
. T is Home.
(<) Suppose that f is Home., to prove f*(B% = (f*(B))°
.+ f ishome. = f is cont. and f™ is cont.
= f(B°) < (F'(B))° and (f*(B))° = f™(B°)
= f1(B°) = (f*(B))

Definition : Topological Property

A property "P" of a topological space (X, t) is called a topological property iff every
topological space (Y, t) homeomorphic to (X, t) also has the same property. i.e.,

iIf (X, 1) = (Y, t') and (X, 1) has a property "P", then (Y, t') has the same property and
vise versa.

Subspace or Induced space

Definition : Let (X, t) be a topological space and W < X. Define the family ty as a
family of subset of W as follow :

w={WNU: Uert}
Notes that the elements of 1, are intersection W with every open set in X.

Theorem : Let (X, 1) be a topological space and W < X. Thentw ={W[)U : Ue

T} is a topology on W.
Proof : We will satisfy the three conditions in the definition of topological space.
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(1) Toprove, Wety and ¢ €ty .

T XetT AW X =>W=WNX = Werty (def. of )
Cher A X = 0=WNd = dertw (def. of ty)
(2) LetVy, V,e 1w, toprove Vi V:etw
v Vietw = 3 Uet; Vi=WNU; (def. of tw)
S Voetw = 3 Uet; Vo=W(NU, (def. of ty)
= Vi[1Vo=(WNU) N (WM Uy)
= Vi V= WN UL NU) (since () distribution on ()
e T
= Vi V. etw (def. of ty)
(3) LetVy ety ;aeA, toprove JueaVy € Tw
v Veetw = 3 Uget; Vo=WNU, ;aeA (def. of ty)

= Uoer Vo = Uaea(W N Uy)
= Udner Vo = W (Uoea Ua)
eT
= Unea Va € tw (def. of tw)
Therefore, 1y is a topology on W.

Definition : Subspace (or Induced) Topology

Let (X, 1) be a topological space and W < X. Then the topology T is called the
subspace (or induced) topology for W and the pair (W, ty) is called subspace of
(X, 7).

Example : Let X ={a, b, c}, t={X, ¢, {a}, {a, c}}, W={a, b}, Z={b} and K = {a,
C}. Find Tw, Tz, TK -
Solution :
w={WU: Uert}
w={WNAX, WMo WN{a}, WM {a c}}
={W, ¢, {a}}
By similar way we compute 1tz , T« .
2={ZU : Uer}
z={ZNX, ZN ¢, ZN{a}, ZN{a c}}
={Z, ¢} = Iz = indiscrete topology on Z
w={KNOU : Uert}
w={KNX, KN ¢ KN {a}, KN{a c}} ={K, ¢, {a}}.
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Remarks :

[1] Notes that there is an open set in the subspace but it's not open in the space. In
the previous example the set W = {a, b} is open in the subspace (W, tw) but it is
not open in the space (X, t) i.e., W ¢ 1, SO we have :

Ver, & Ver
In other word ty & t (in general).

[2] IfW € 1, thentyc .

[3] Notes that, in the previous example 1t =1z ={Z, ¢}, but t= Ix = {X, ¢}.

[4] There are some example 1 = Dy = discrete topology on W, but t+ Dy i.e.,

(tw = Dw ;ér: Dx)
For example : Let X = {a, b, ¢, d}, T = {X, ¢, {a, b}, {c, d}} and W = {a, c},
then ww={W, ¢, {a}, {c}} = Dw

[5] If tx =Dy, then 1y =Dy forall W c X. (i.e., tx = Dx = tw =Dw)

To prove this property it's enough to prove that every singleton subset of W is
open setin W.

Letye W = {y}cW,toprove {y}etw ??

v AyleWeX = {yleX = {y}eDx

since {y}=WN{y} = {ylew
= 1w = Dw.
[6] Ift=Ix={X, ¢} then t=Ilw={W, ¢}. (i.e,t=1lx = tw=Iw)
To prove this property
w={WNU : Ue}={WNX W ¢}={W, ¢}

Example : In the usual topological space (R, t,). Find the induced topology for the
following sets: W=[0,1], H=N, M=Q, K=[2, 3).
Solution : The open sets in (R, t,) is the union of family of open interval and the

family of open interval is a basis for topology t, . So we will use the open interval to
compute the basis for induce topology for given set as follow :

W =0, 1] ??

if, ab<0 v ab=>1 - pH ) R
then, [0, 1] (a,b) = ¢ a bo 1 a b

if, b>1 A a<Oo0 —— R
then, [0, 1] (a, b) =[O0, 1] a o0 1 b

if, b<1 A a>0 HHHHD ] R
then, [0, 1] (a, b) = (a, b) 0Oa b 1
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if, a<0 A O0<b<l
then, [0, 1] N (a, b) = [0, b)
if, 0<a<l A b>1 f (A ) R
then, [0, 11N (a, b) = (a, 1] 0 a 1 b
From the probability above the basis for induce topology T is

Bw ={[0, 1], ¢, (a b), [0, b), (& 1]}
Notes that the elements in this family is infinite since a, b € R.
H=N ??
The induce topology for H = N is discrete topology Dy since :

Let (a, b) openinterval in (R, 7)) ;a,beRandneN;n-1<a<nandn<b<n+l.

| 1 Y | | | |
< T 71 | | I

n-1a n bn+tl n+2 ..
This means that every singleton set (i.e., N[ (a, b) = {n}) from N is open in N (i.e.,
{n} € 1y ). Therefore 7y = D.
M=Q??
We will intersect Q with every open interval (a, b) in (R, t,) ; a, b € R.
. R
a Q b
Q ) (a, b) = the rational numbers in (a, b) and the basis for induce topology 1 is

Bo={Q N (a,b);a beR}

-~
g
I~
I~

QD
o
o P
[

K=12,3)??
To compute the induce topology 1« ; K =[2, 3) is similar of compute the induce
topology tw ; W = [0, 1] above by replace [0,1] by [2, 3) as follow :

if ab<2vab>3 — DA R
= [2,3)N(ab)=d a b2 3 a b

if a<2 Ab>3 —— Y ———— R
= [2,3)N(a b)=[2,3) a 2 3 b

if a>2 A b<3 ST ) R
= [2,3)N(a b)=(a b) 2a b 3

if a<2 A 2<b<3 —FHHHID ) R
= [23N(@b)=[2Db) a 2 b 3

if 2<a<3 Ab>3 [ D ) R
= [23N(@b)=(3) 2 a 3 b

From the probability above the basis for induce topology t« is
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Bk ={[2, 3). ¢, (a, b), [2, D), (a, 3)}-
We can compute the induce topology for the intervals [c, d], [c, d), (c, d], (c, d) by
similar way by taken this probality and replace W = [0, 1] or K =[2, 3) by [c, d], [c,
d), (c, d], (c, d).

Theorem : Let (X, 1) be a topological space and (W, 1) be a subspace topology of
X. If W e 1, then 1y is subfamily of z. i.e.,

If W open set in X, then every open set in W is open in X.

Proof : We must prove the following statement twc t (i.e.,if Vet = Ver1)

Let Vetw = 3dUet ;V=WNU (def. of tw)

.~ W e 1t (by hypothesis) A U et
=>W(NUer (def. of Top.)
=Ver (since V=W NU)

The following example clear this theorem :

Example : Let X = {a, b, ¢, d}, T = {X, ¢, {a}, {a, b}, {a, b, c}} and W = {a, b, c}.
Find Ty .
Solution :
Clear W € 1. To compute 1y :
w={WNU : Uet}
w={WNX, WM ¢ WN{a}, W {a b}, W[ {a, b, c}}
={W, ¢, {a}, {a b}}

Notes that ty is subfamily of © (i.e., tw < 7).

Remark : From definition of induce topology Ty , notes that :

Vet < FIUet ;V=WNU
The question now what about the close set, the previous statement satisfy or not ??
The answer yes such that :

Ac () < JFet ;A=WNF
By other statement :
Ae¥y < dFed ; A=W(F
Such that & is the family of closed sets in X and &y is the family of closed sets in W.

Example : Let X ={a, b, c}, 1 = {X, ¢, {a}, {b}, {a, b}} and W = {b, c}.
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Then tw = {W, ¢, {b}}, F = {X, ¢, {b, c}, {a, c}, {c}} and F, = {W°, ¢°, {b}‘} such
that :
Fw ={W", ¢°, {03} = {o. W, {c}}

={wnAX;Wne,wWn{b c}, WN{a c} WN{c}}

Theorem : If K is a subspace from W and W is a subspace from X, then K is a
subspace from X.

Proof : Let (X, 1) be a topological space and W < X, K< W, to prove K is a
subspace from X, must prove :

1) KX
(2) ifAE(’Ew)K =3JUer ,A:KﬂU
Now,

(1) SinceKcWcX = KcX
(2) Let Ae(twk =3IVetw ; A=KNV
(def. of induce top. and K is a sub space from W)
w Vetw =3 Uert; V=WNU
(def. of induce top. and W is a sub space from X)
A=KV = A= KNWNOU) (since V=W NU)
= A=(KNWNU (N associative)
= A= KU (@inceKcWand K=KW)

Definition : Restriction Function
Let f: X — Y be a function and let A < X. We say the function g : A — Y such that
g(a) = f(a) for all a € A is the restriction function on the set A and denoted by g =f |

A

Example : Let f: R — R such that f(x) = x + 1 be a function.
Notes that the domain of f is R, take N R and

flv:N— R such that (f |)(X) = x + 1.

f |\ is restriction function on the set N.

We will use this definition to introduce the following theorem :

Theorem : Let f: (X, 1) — (Y, t) be a continuous function and W be a subspace
topology from X. Then f |y is continuous.
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Proof : To prove, f|w : (W, tw) — (Y, ') is continuous ??
e, toproveif Vet = (flw)'(V)etw

Let Vet = f'(V)er (since f is continuous)

= WNOFfYV)etw (By def. of 1)

= (flw)'(V) etw (since. W fH(V) = (Flw)"(V))
- Tlw is cont.

Remark : From previous theorem we can get on an infinite number from continuous
functions thought out know one continuous function for example :

f: (R, 1) — (R, 1) such that f(x) = x + 2 is continuous function.
.. every functions of follows is continues function :
flv,flo, flz g, Flow - ete.

We can get another of an infinite number from new continuous functions by
theorem blow :

Theorem : Let (X, 1) be a topological space and (W, ty) be a subspace of X. Then

the inclusion function i : (W, tw) — (X, 1) such that i(x) = x for all x € W is
continuous.

Proof : Toprove if Vet = i*(V)etw

Llet Vet = i*(V)=WNV (since W — X and def. of i)
= iV)etw (since WV € tw and by def. of )

- 1iscont.

Let (X, t) be a topological space and (W, tv) be a subspace topology of X and
A W < X. We can compute A , A°, A’ in (X, 1) and from the other hand we can
compute A, A°, A in (W, ty). The question what relation between (A in X and A in
W), (A% in X and A° in W) and (A” in X and A”in W) ?? The theorem blow answer
on this questions :

Theorem : Let (X, 1) be a topological space and (W, 1) be a subspace topology of
Xand A c W c X, then

(1) WNA =A inW ;A isclosure of Ain X

(2) WNA° cA°inW.

(3) WNA > A”inw.

Proof :
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(1) Toprove, WNA =A inW

we must prove, WA cA inW and WA 2A inW

TAcCWcX = Ae¥ (by previous theorem A is closed in X)
=ANWe Fy (A'is closed in W)

Now,

AcW A AcA = AcCWNA

Notes that W (] A is closed set in W and containing A, but A in W is the

smallest closed set in W contain A, so we get

= AINWcCWNA = e (1)
and,
WA ecFw=IFeF: AINW=W(F
= AcF
=AcF=F = AcF (F =Fsince F is closed)
=WNA cCcWNOF=AinW
SWNA cAinW e )

From (1) and (2) we have, W A =A inW.
(2) Toprove, WNA° < A’inW
Aer = WNA° et
= WNACcA°cA = WNA° cA
= WA’ cA’inW (since W) A°open in W contain in A)
i.e., A°in W must contain all open set in W contain in A.
(3) Toprove, A’ inWc A’ W.
Letxe A°inW = VVerty,xeV VNA=d A VNA £
(By def. of boundary point)

Vet =>3dUert;V=WNU (def. of tyw)
> VUenxeUUNA=zd A~ UNA“ 2
—SxeA’” =>xeA"NW (sincexeVcW )

CAYIinW c AP W

Remark : The equality of properties (2) and (3) in the previous theorem is not true in
general and the following example clear that :

Example : Let X ={a, b, ¢, d}, t = {X, ¢, {a}, {a, b}, {a, b, c}} and W = {a, c, d}.
Then tw ={W, ¢, {a}, {a, c}}, A={a, c}
A={a c}=A"inW since Aety and A°’={a}

Since {a} is largest open set in X containing in A =
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A°NwW={a}N{a cd}={a} = A’ inW=A’MW since {a, c} = {a}
On the other hand to compute A, A” in W, we will compute A*, A*in W such that
A*in W = ¢, then
A" inW=W-(A°inW A inW)=W-{a c}= {d}
. APin W = {d}
A= = A"=X-(A°UA)=X-{a}={b,c,d}
= A"NW={c,d}
LAY InW=A"NW
To check property (1) in the previous theorem we compute A and A in W as follow :
AinW=W and A=X = ANW=XOW=W
. AinW=ANW

Product Space

Definition : Cartesian Product
Let X and Y be any two sets. The Cartesian product , or simply product of X by Y
is denoted by XxY and denoted as :

XxY={(x,y); xeXA yeY}

Definition : Product Space

Let (X, t) and (Y, t') be two topological spaces. We say the topology has a base f3 ;
B={UxV;UetAn Ver'}

Is the Product Topology on the set XxY and denoted by tx.y and called the spaces

(XxY, tx.v) is the Product Space of X by Y.

Remark : Notes that B in general not topology since it's not satisfy the third
condition of topology, but since B is a base for topology, so we can get the three
condition of topology and the following example show that :

Example : Let X ={1, 2, 3}, t ={X, ¢, {1}}, Y ={a, b} and ' = {, ¢, {b}}.
Compute tx.y .
Solution :
XxY ={(X,y); xe XA ye Y}
={(1,a), (1,b), (2, a), (2, b), (3, a), (3, b)}
B={UxV;UetAn Ver}
= {XxY, Xxd, Xx{b}, dxY, dxd, ox{b}, {1}xY, {1}xd, {1}x{b}}
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= {XxY, ¢, Xx{b}, {1}xY, {1}x{b}}
Since Ax¢d = ¢ and ¢pxA = ¢ for any set A.
S B ={XXY, 6,{(1, D), (2,b), 3, b)) {(1, ), (1, b)}, {(1, b)}}

Notes that 3 is not topology since

{(1,b),(2,b), B, 0)} U{(1,a), (1,b)}} ¢ B

The elements of tx.y is elements of 3 and add all possible union of elements of {3 ;
Sty = {XXY, ¢, {(1, b), (2, 0), 3B, b)}, {(1, @), (1, b)}, {(1, b)}, {(1, b), (2, b), (3,
b), (1, 8)}}.

Remark : We can compute the product space (XxX, tx.x) depending on (X, tx) only,
also we can compute (YXY, Ty.y), (YXX, Tyxx), (XXYXZ, Txxyxz), ... €tc., there are
an infinite number from product spaces which can computing from one space known
or more than one space. In general XxY # YxY.,

From known product spaces which we use always is usual space R" ; n eN and
the most common one is R* which represent the plane and its product space follow
from product (R, t,) by self.

Example : Let X = [0, 1] be a subspace of (R, t,) and take S' = {(X, y) € R?% x*+y?
=1} be a subspace of (R?, t,) such that S' geometry represented as a circle in plane its
center the original point (0, 0). Then [0, 1] x S'"is a cylinder as follow :

0 1 S' 0 1

| |
| | X

R

Remarks : Let (X, t) and (Y, t') be any two topological spaces.
[1] Ift=Ixand 7' =Ily, then tx.y = Ix.y, i.€.,
If t ={X, ¢} and ' = {Y, ¢}, then tx.v = {XxY, ¢} and B is:
B = {XxY, Xxd, dxY, dxd} = {XxY, ¢} = Ix.vy
[2] Ift=Ixandt' #lyort=Ilxandt = Iy, then tx.y # Ix.y , for example :
If X ={1, 2}, 1 ={X, ¢, {1}}, Y ={a, b} and ' = {, ¢}, then
B={XxY, o, {1}xY} ={XxY, ¢, {(1, @), (1, D)}} = txxv # Ixxy
[3] Ift=Dxand t' =Dy, then tx,y = Dx.v,
Proof. To prove any topology is discrete topology it's enough to prove every
singleton set is open i.e., (V {(X, y)} singleton set = {(X, ¥)} € Tx.vy )
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[4]

[5]

[6]

{(x, y)} = {x} x {y} (def. Cartesian product of X by Y)
{x}er (since T = Dy)
{y}er (since v = Dv)
{0 ¥)} € Bxxy
= {(X, ¥)} € txxy (def. product spaces)

If t Dy or t'# Dy, then tx.v # Dx.y , and the following example show that :
If X ={1, 2}, t ={X, ¢, {1}, {2}} =Dy, Y ={a, b} and v = {, ¢} # Dy, then

B ={XxY, ¢, {1}xY, {2}xY}

={XxY, ¢, {(1, a), (1, b)}, {(2, @), (2, b)}} = Brxy = Txxy # Dxxy

If Ac Xand B c Y, then AxB < XxY and we can compute the closure of AxB
in XxY (i.e., A x B), on the other hand there are A in X and B in 'Y, also we can
compute A x B and the question what relation between A x B and A x B and the
answer A X B=A x B.
Also, by similar way we can conclusion (AxB)°= A°xB°.
There are two natural projection functions from product space XxY to codomain
X and others to codomainY and denoted by Py and Py and called the first project
XxY on X and called the second project XxY on Y. We will show that the two
functions are surjective , continuous and open as follows :
Py : XxY > X ; Px((X,¥)=x and
Py: XxY >Y ; Py((x,y) =y
; the first projection map the order pair (x, y) to first coordinate while the
second projection map the order pair (X, y) to the second coordinate.
To prove, Py is continuous function
We must prove, if Uet = Prl(U) € Ty

LetUet = Pg(U)=UxY (By def. of Py)
v Uet A Yer = UxY e Bxxy
= UxY € Tyy (since Bxxy  Txxy)

:>PX_1(U) € TxxY
.. Px 1s continuous functions
By similar way we prove Py is continuous functions

LetVet = Py1(V)=XxV (By def. of Py)
wXet A Vetr = XXV e By
= XxV € Txyy (since Byxy < Txxy)

= PY_1(V) € TxxY
.. Py is continuous functions
To prove, Py is open function
Let UxV € Byx.y = UxVopensetin XxY ; Uet A Vet
= Px(UxV)=U
wUer = Pyx(UxV) et
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[7]

[8]

.. Px is open functions
By similar way we prove Py is open functions
Let UxV € Bx.y = UxVopensetin XxY ; Uet A Ver

= Py(UXV) =V
Vet = Py(UxV) et
.. Py is open functions.
Notes that XxY = YxX since (X, y) = (y, X) in general, but XxY = YxX (i.e.,
XxY, YxX are Homeomorphic), to prove this :
Define f: XxY —> YxX ;  f((X,¥)) =(y, X)
f 1s 1-1 function since,
Let f((x1, y1)) = f((X2, ¥2)) = (Y1, X1) = (Y2, X2)

=X1=X2 N Y1=Y2
= (X1, Y1) = (X2, ¥2)-

f is onto function since,
V (Y, X) e YxX 3 (X,y) € XxXY ; f((X,y)) = (Y, X).
f is continuous function since,
Let B be a base of XxY and B' be a base of YxX
LetVxUef' = Vet A Uer

= VxU e TyxX

= f 1(VxU) = UxV open set in XxY
f is open function since, the image of every open set in domain is open set in
codomain ;
LetUxV e = UxVopensetinXxY ; Uet A Vet

= f(UXV) =VxU € TyxX
.. fis homeomorphism function.
If yo € Y, then the product space Xx{y,} topological equivalent the space X.
e,  Xx{yo}=X ;  Xx{yo}={(X Yyo) : xe X}
To prove this :
Definef: X —> Xx{yo} ; fX)=(X V) V xeX
f is 1-1 function since,
Let f(x) = f(x2) = (X1, Yo) = (X2, Yo)

= X1 =X Y X1, Xo € X
f is onto function since,
V (X, Yo) € Xx{Yo} 3 X € X; f(X) = (X, Yo)
f is continuous function, since the sets in the base of the space Xx{yq} is
Ux{yo} ; U € tor ¢, then
fiU{yo))=Uet and f(d)=der
f is open function, since if U is open in domain X, then f(U) = Ux{y,} and
Ux{yo} is open in codomain Xx{yo}.
.. Tis homeomorphism function.
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[9]

If Xo € X, then the product space {Xo}xY topological equivalent the space Y.
e,  {XopxYzY o {Xo}xY ={(Xo,Y) : YEY}
To prove this : (By a similar way of [8])
Definef:Y — {X}xY ; f(y)=(XoYy) V yeY
f is 1-1 function since,
Let f(y1) = f(y2) = (%o, Y1) = (X0, ¥2)
=>VY1i=Y> YVy,Y€Y
f is onto function since,
V (X0, Y) € {Xo}xY 3y € Y f(y) = (X0, ¥)
f is continuous function, since the sets in the base of the space {Xo}xY is
{Xo}xV ; V e t' or ¢, then
fi{x}xV)=Ver and fli(¢p)=¢per
f is open function, since if V is open in domain Y, then f(V) = {X}xV and
{Xo}xV is open in codomain {Xo}xV.
.. Tis homeomorphism function.

Notes that Xx{y,} is a sub space of the space XxY and represented horizontal section
in the space XxY at the point y,. Also, {Xo}xY is a sub space of the space XxY and
represented vertical section in the space XxY at the point X.

For example, take X =Y =R and t = 7' = 1, , then the product space XxY is the

known plane R,
Let yo = 2, then Xx{yo} = Rx{2} is subspace from R? and represented as horizontal
line segment and the following figure show this :

Let X, =3, then {X,}xY = {-3}xR is subspace from R? and represented as vertical
line segment and the following figure show this :

AR
(=3.y)

A
——

v

S

{- 3R
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Definition : Quotient Space
Let (X, tx) be a topological space and Y be any set. Let f: X — Y be a surjective
function, then the set

w={GcY;f'G)en}
Is a topology on Y this topology called quotient topology on Y generated by f and
(X, tx).

Question : The topology 1 = {G < Y ; f }(G) € t«} is the largest topology on Y
make the function f continuous.

Answer : Let t be another topology on Y making f continuous.

= f(G)isopeninX V Ger.

= Gers (def of ’L'f)

= TC Tf

= 1z is the largest topology on Y making f is continuous.

Theorem : Let f: (X, tx) — (Y, ty) be a continuous surjective function, if f either
open or closed, then t; = 1v.

Proof :

Clearly, ty < (by previous question)
Now, to show that 1 c Ty

LetG ety = F(G) e 1«

= f(f(G)) =G isopeninY (since f is open)

= Geny

= TS Ty

So, 1 = 1v.

By similar way if f is closed.

Theorem : Let Y has the quotient space generated by the surjective function f: X —
Y, theng:Y — Zis continuous function if and only if gof is continuous function.

Proof : f

(=) The composition of continuous functions is continuous. X =—¥
(<) Let G be open setinZ

Since gof is cont. = (gof)™(G) = f (g™ (G)) is open in X gof g

Butg™(G)cY A fHg™(G)) isopeninX
= g (G) isopeninY (by definition of t; , g(G) € 1;)
= @ is continuous.

N
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Remarks :

[1] Let X be a nonempty set. The partition or decomposition on X with the
relation R is the family of disjoint nonempty subsets of X and their union equal
X. The elements of this partition called equivalence classes and denoted by [X].

[2] The set of equivalence classes for X is called guotient set for X with the
relation R and denoted by X|R = {[x] : x € X}.

[3] The mapping p : X — X/R; p(x) = [X] is called guotient mapping.

Definition : Quotient Space

Let (X, 1) be a topological space and R be equivalence relation on X. Letp: X —
XIR ; p(X) = [X] be surjective quotient mapping from X to X|R, then the quotient
topology on X|R is the largest topology make the function f continuous and the space
(X|R, txR) Is called guotient space.
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Chapter Three : Compact Spaces

Definition : Cover & Finite Cover & Open (resp., Closed) Cover
Let {A.}qca be a family of subsets of the space (X, ). We called the family {A,}qca

cover of X iff X equal the union of elements of the family {A }oen -
(i.e., X = Uoer Ax)
If {A.}aca is finite and cover X, then {A.}.ca IS called a finite cover of X.
If each A, a€A, is open (resp., closed) in X and {A.}q.ca cover X, then {A }uca IS
called an open (resp., closed) cover of X.

Definition : Subcover
Let C = {A,}.ca be a cover of X and {Bi}icx be a sub family of C and cover X, then

{Bi}ica is called subcover from C.

Definition : Compact Space
A space X is called compact iff each open cover of X has a finite subcover for X.
le.,
Xiscompact & V C={Uy}tucr ; Uset Va A X=UJger Ug
= Joy, 0z, ..., o ; X= U, Ug,
Xisnotcompact << 3 C={U,}ecr ; Uset Vo A X=Uger Uy
= Ao, 0z, ... 0 ; X= UL, Ug,

Example : Take X =R and t = {R, ¢, Q, Irr}
The opensetintare R, ¢, Q, Irr.
Take, C; ={Q, Irr} is open cover for R (i.e., R = Q | Irr) and it’s a finite subcover
of R, so this cover satisfy the definition of compact space.
Now, we introduce all open cover for R as follow :

C={R, ¢, Q}, C3={R, ¢, Irr}, C, ={R, Q, Irr}, Cs = {0, Q, Irr},

Ce=1{R, ¢}, C;={R, Q}, Cg ={R, Irr}, Co={R, ¢, Q, Irr} =1

and every cover of them has a finite subcover, hence (R, t) is compact.

Remark : If we want to show that the space is not compact it's enough give one open
cover, but has not finite subcover. The following example show this :
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Example : Is (R, t,) compact space ???

Answer : No
Take the opencover C={(-n,n) ; neN}forR (i.e.,R = Uinzl(—n, n) ).
{ { { I ) ) ) R

-3 -2 -1 0 1 2 3
Notes that the open cover C has no finite subcover, because if we assumption there
exists a finite open interval cover R , then their union is the large interval, for

example (—m, m); m e N, this means R = (—m, m) , m # oo and this contradiction!!!

Example : Show that (N, tes) IS cOmpact space.
Solution : Let C = {U,}.cx be an open cover for N, then
N =Uoea Ug ; UgEteor VaeA
since U, € Tt , then N— U, if finite , for all U, € T¢of
take arbitrary set say U, _, then N—U,_ if finite,
let N— U, ={X1, ..., Xn1}; X1, ..., Xp1 €N
this means that U, _ contains all natural numbers excepts Xy, ..., X1
take another set contains x; say U, and set contains X, say U,, ....etc set contains
Xn.1 2y U, _ . So we have n set whichare U,_,......, U, suchthat N= Ui“: 1Ua;-
therefore, the open cover C = {U,}ca has a finite subcover {U,, }iL,, hence (N, tco) is
compact.

Definition : Compact Subspace

Let (X, 1) be a topological space and W be a subspace of X. We called a space W is

compact space iff every open cover from X cover W has a finite subcover. i.e.,
Wiiscompact < V {Uy}eer ;UgetT Va A W Uoen U

. n
= Jay, 0y, ...,0 WC Ui=1Uai'

Theorem : (Heine-Borel Theorem)
The subset A < X is compact iff A is closed and bounded.

Remarks : The previous theorem is one of theorems which study in mathematical
analysis which is specific to subsets of Euclidean space R with usual topology and

special case in (R, 1,). S0, every subset of R is compact iff its closed and bounded.
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Example : In (R, 1,) show that any set from the following sets is compact by using
Heine-Borel Theorem.
A=(2,3), ,B=[57], C=[-2,1), D=N, ,E={2,3,4}, F=Q
Solution :
A not closed and bounded = not compact.
B closed and bounded = compact.
C not closed and bounded = not compact.
D closed and not bounded = not compact.
E closed and bounded = compact.
F not closed and not bounded = not compact.
In general in usual topology (R, 1),
every closed intervals is compact sets.
every half closed (open) interval and open intervals is not compact sets.
every finite sets of points is compact sets.
Q and Irr not compact.

Definition : Hereditary Property

We call a property "P" of a space (X, t) hereditary property iff every subspace of a
space X with the property must have the property.

Notes that if there exists at least one subspace not satisfy this property, then this
property not hereditary property.

Remark : Compactness is not hereditary property. For example :

Example : Take X = [0,1] with induce topology from (R, t,) and take W = (0, 1).
Clear that W < X and X is compact space, but W is not compact.

Theorem : If A and B are compact sets in a space (X, 1), then A |J B is compact set.
Proof : LetC={U,}ocr ; U, et VYV a opencover of AJB.
To prove C has a finite subcover
w AUBcUuer U = A Uoer Us A B S Uuer Us
(sihceAcAUB,BcAUUB)
.. C cover of A and B, but A and B are compact
=30y, ..., ;AcU_, Uy, and Joy,...,on ;Bc U].ILUG].
= AUBcUp Uy,
.. C has finite subcovetfor A|lJB = A||JB compact set.
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Remark : If A and B are compact sets in a space (X, t), then A () B is not necessary
compact set.

Example : Let X =N[J{o, -1}, 1={Uc X:-1,0 € U A U finite} |y P(N)
A={0}UN, B={-1}UN

Notice that A and B are compact subsets of X, but A () B is not compact, since there
exists G = {{n} : n € N} is an open cover of A () B, but it has no finite subcover.

Remarks :

[1] If s finite set, then (X, t) is compact space, since every open cover heir being
finite, so every open cover has a finite subcover.
Special case : (X, I) is compact space for any X (finite or infinite), for example
(R, 1) and (N, I) are compact spaces ... etc.
Another special case : if X is finite, then t is finite set and t < IP(X), therefore
(X, 1) is compact space.

[2] If X is infinite set, then (X, D) is not compact space, since the open cover C =
{{x} ; x € X} has no finite subcover. If X is finite, then (X, D) is compact space
(by Remark [1]).

Theorem : The continuous image of compact space is compact. i.e.,
If f: (X, ) > (Y, t') is continuous function and X is compact space, then f(X) is
compact.
Proof : Let f: (X, 1) - (Y, 1') be continuous and X compact space.
To prove, f(X) compactin Y
Let C={V.}.ca Open cover for f(X)
= f(X) cUsea Vo ; VoeT YVaeA
= fH(f(X)) < (Uoen Vo)
= X € Uaea (Vo) (since F(f(X)) = X and f*(Uuea Ac) = Unen FH(A) )
Since f is continuous = f (V) etV a e A
= {f (Vo) }oen is open cover for X
 Xiscompact = J oy, ..., o ; X< Ui, f1(Vy,)
= f(X) c (UL, f ' (Vo))
= = U?=1f(f_1(Vai)) (since f(A U B) =f(A) U f(B) )
= f(X) < UL, Ve, (since f(f *(A)) c A)
- F(X) compact set.
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Corollary : If the product space XxY is compact, then X and Y are compact spaces.
Proof : The projection function Py : XxY — X is continuous and onto
- XxY compact = Pyx(XxY) compact (by previous theorem)
* Px onto = Py(XxY)=X
= X compact
By the similar way we prove Y compact.
The projection function Py : XxY — Y is continuous and onto
- XxY compact = Py(XxY) compact (by previous theorem)
- Py onto = Py(XxY)=Y
= Y compact

Remark : If X and Y are compact spaces, , then XxY is compact spaces (i.e., the
converse of the above theorem is true in general), and it's theorem one of the
important theorem in topology called Tichonov theorem (without prove) and we will
introduce some examples to user of this theorem.

(R, t,)x(N, teof) IS NOt compact space, since (R, t,) not compact.

(N, teop)x(N, Teof) IS cOMpact space, since (N, 1) compact.

(N, teopx(R, 1) is compact space, since (N, t) compact and (R, 1) compact.

(R, D)x(R, 1) is not compact space, since (R, D) not compact.

({1, 2, 3}, 1)x(X, 1) is compact space for any t and for any X, since {1, 2, 3} is finite
set and (X, I) compact for any X.

Definition : Topological Property

A property "P" of a topological space (X, ) is called a topological property iff every
topological space (Y, t') homeomorphic to (X, t) also has the same property. i.e.,

iIf (X, 1) = (Y, 1) and (X, 1) has a property "P", then (Y, t') has the same property and
vise versa.

Theorem : Compactness is a topological property.
Proof : Let (X, t) and (Y, t') be topological space ; Xz=Y
Suppose that X is compact, To prove Y is compact

*Xz2Y = 3f: (X, 1) > (Y, 1) ;f 1-1, fonto, f continuous, f* continuous
- f continuous, onto and X compact = f(X) =Y compact

(by theorem : The continuous image of compact space is compact)

Now, suppose that Y is compact, To prove X is compact
-+ £ continuous, onto and Y compact = f™(Y) =X compact
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(by same theorem : The continuous image of compact space is compact)

Remark : By using compactness as a topological property, we can decided the
known space is equivalent another known space or not. Also, we can decided the
space unknown (compact or not compact) if its equivalent another known space
compact or not compact. For example :

(R, I) # (R, 1y) since (R, I) is compact, but (R, t,) not compact. Also,
If (N, 1) = (Y, 1) and since (N, tf) IS compact, then (Y, t) is compact (since
compactness is topological property).

Remark : Compactness is not hereditary property (remark p.67), but if we add a
condition for the subset from compact space become a compact set and the following
theorem show that :

Theorem : A closed subset of a compact space is compact.
Proof :
Let (X, ) compact space and F closed set in X
To prove, F compact set
Let C={U.}.car Open cover of F
= F cUwerUy ;Uget YVaeA
X=FUF = X=UwaUUF° (since F < UJoeaUo)
" Uget VaeA A Flen (since F closed set)
= {Uq}aen U {F} open cover of X
X compact =3 o, ..., 0 ; X= (UL, Uy) UF
But, FcX =Fc(UL,Uy) UF
Since FNF'=¢= Fc U_, Uy
. F compact set.

Notes that the condition being F closed is very important and the theorem is
not true if the condition deleted.

Definition : Finite Intersection Property
Let {A.}qca De a family of sets. We call this family satisfy the finite intersection
property and denoted by (f.i.p) if the intersection of any finite number of elements of
this family is nonempty. i.e.,

{Ac}oen hasfip. & NL; Az 9V N
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Example : Let A, = (—%,%) ;neN
Notes that, the intersection of any finite numbers of elements of this family is
nonempty, so its satisfy (f.i.p).

Remark : If the family {A.}.ca satisfy (f.i.p), then it is not necessarily that the
intersection every elements of the family is nonempty. i.e., not necessarily Ny ep A #

d.

Example : Let Ay = {n,n+l, ...} ;neN
Ar=N A =N\{1}, As =N\ {1, 2}, ...
Notes that, intersection every finite numbers of the family is nonempty while
n=1 A= ¢ and this family satisfy (f.i.p). i.e., in general
LiAc# 0V NE Nuen Ac# §

Theorem : A space (X, t) is compact iff every family of closed subsets of X satisfy
(f.i.p) being intersection nonempty.
Proof : (=) Suppose that X is compact space and {F,}.c be a family of closed sets
satisfy (f.i.p.), to prove (Naea Fo # ¢.
Suppose (Noca Fou = ¢
= (Maea Fo)* = ¢°
= Uoer F& =X
Since F,isclosed Va = F§ etV a
= {F&}ocn 1S Open cover for X
Since X is compact = 3 ay, ...., oy ; X = UjL, Fg
= X°= (Uiz, Fg)°
=dé=NL,F,; CHI
Since this family satisfy (f.i.p), then NiL; F,; # ¢.
S0, (NoerFo # ¢.
(<) Suppose {F.}.ca be a family of closed sets satisfy (f.i.p.) and (eea Fo # ¢. ((for
any family of closed sets satisfy (f.i.p.) )), to prove X is compact.
Suppose that X is not compact = 3 open cover for X has not finite subcover

i.e., X= Uae/\ Ua AX# Uin=1 U(xi v n
= X°# (UL1 Up)® = ¢ = Nizy UG
Ug; € FsincelUgert

Ag.;n)mum‘)_) Wﬁujﬁuuuyd 74



Chapter Three 2023-2024 Compact Spaces

we have, the family of closed sets {US }.ca Satisfy (f.i.p), but intersection this family
IS empty since
X = UoeaUa = X = (UueaUo)’
= ¢ = [NeeaU&  CH! (with hypothesis)
.. X compact space.

Definition : Lindel6f Space
A space (X, 1) is called Lindel6f space iff each open cover of X has a countable
subcover for X. i.e.,

XisLindelof < V C={Uy}ucr ; Uget Va A X=uer Uq

o0
= Jog, 02 . ; X=UiLy Uy

Question : Prove or disprove :
(1) Every compact space is Lindel6f space.
(2) Every Lindel6f space is compact space.
(3) Every finite space is Lindel6f space.
(4) Every countable space is Lindel6f space.
Solution :
(1) Yes, prove, i.e.,, Compact = Lindelof.
Let X be a compact space = every open cover of X has a finite subcover
. every finite set is countable set
= every open cover of X has a countable subcover
= X is Lindel6f space.
(2) No, disprove, i.e., Lindelof # Compact. For example :
(R, t,) is not compact space (see page 66), but its Lindel6f space :
Since every open cover of R contains of open intervals (by definition of t,) and
every open interval contains at least one rational number (since Q is dense set in
R), so we can use this rational numbers to numerical the open intervals, so this
cover became countable (since the rational numbers is countable).
" every set is subset of itself, so the countable open cover we search it is itself,
- (R, 1) is Lindelof.
(3) Yes, prove
Since every finite space is compact space and every compact space is Lindelf.
(4) Yes, prove
Since every open cover is countable, so it’s the subcover required.
Example : (N, 1) and (Q, 7) is Lindel6f for any topology r.
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Notes that, the Lindel6f space not nessarily countable (example : (R, 1) is
Lindel6f, but not countable)

Example : (X, I) is Lindelof, since its compact space and the only open sets are X, ¢.
For examples of this space (R, I), (C, I) and (Q, 1) are Lindel6f space (we can replace
X by any set).

Example : (X, D) is Lindel6f if X is countable and not Lindel6f if X is uncountable.
For examples of this space (N, D) and (Q, D) are Lindel6f space, but (R, D) and (C,
D) are not Lindelof space.

Example : (X, 1) IS Lindelof if X any infinite set since its compact space. For
example of this space (N, t¢of), (R, Teor) and (C, teof) ... etc.

Example : (X, 1) is Lindel6f if X any uncountable set since its compact space.

Remark : Lindel6fness is not hereditary property, but if we add a condition for the
subset from Lindel6f space become a Lindel6f set and the following theorem show
that :

Theorem : A closed subset of a Lindelof space is Lindelof.
Proof : Similarly of prove Compactness (see page 70).

Theorem : The continuous image of Lindelof space is Lindel6f. i.e.,

If f: (X, 1) > (Y, 1) is continuous function and X is Lindel6f space, then f(X) is
Lindelof.

Proof : Similarly of prove Compactness (see page 68).

Theorem : Lindel6fness is topological property.
Proof : Let (X, 1) and (Y, t') be topological spaces ; X=Y
Suppose that X is Lindel6f, to prove Y is Lindelof
Xz=Y = 3f: (X, 1) > (Y, 1) ;f 1-1, f onto, f continuous, f* continuous
f continuous, onto and X Lindel6f = f(X) =Y Lindel6f
(by theorem : The continuous image of Lindel6f space is Lindel6f)
Now, suppose that Y is Lindelof, To prove X is Lindel6f
f continuous, onto and Y Lindeléf = f™(Y) =X Lindelof
(by same theorem : The continuous image of Lindel6f space is Lindel6f)
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Examples of this theorems :

Example (1) : Let f: (R, 1) > (X, 1) be continuous onto function. What about the
space (X, 1) ??

Solution : Since (R, ) is Lindelof space, then (X, t) is Lindel6f (by theorem : The
continuous image of Lindel6f space is Lindel6f)

Example (2) : Let f: (R, D) —> (X, 1) be continuous onto function. What about the
space (X, 1) ??
Solution : Since (R, D) is not Lindelof space, then we cannot decided the space (X, 1)
Is not Lindel6f because theorem tell us : The continuous onto image of Lindelof
space is Lindel6f, but the domain is not Lindel6f, for example :

f:(R,D)— (R, ) such that f(x) = x
f is continuous onto and domain (R, D) is not Lindel6f, but codomain (X, 1) is
Lindelof.

f: (R, D) — (R, D) such that f(x) = x
f is continuous onto and domain (R, D) is not Lindel6f and codomain (X, D) is not
Lindelof.

Remark : Let f: (X, t) — (Y, t') be continuous onto function and Y is Lindel6f, but
not necessarily X is Lindel6f, for example :

Example : Letf: (R, D) - (R, 1) ; f(x) = X, be continuous onto function and (R, t,)
is Lindel6f, but (R, D) X is not Lindel6f

Corollary : If the product space XxY is Lindel6f, then X and Y are Lindelof spaces.
Proof : The projection function Py : XxY — X is continuous and onto
.+ XxY Lindelof = Px(XxY) Lindelof
(by theorem : The continuous image of Lindel6f space is Lindel6f)
* Px onto = Px(XxY)=X
— X Lindelof
By the similar way we prove Y Lindel6f.
The projection function Py : XxY — Y is continuous and onto
- XxY Lindel6f = Py(XxY) Lindelof
(by same theorem : The continuous image of Lindel6f space is Lindel6f)
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- Py onto = Py(XxY)=Y
=Y Lindelof

Remark : If X and Y are Lindel6f spaces, then XxY is Lindelof space (i.e., the
converse of the above corollary is true in general), i.e.,

Xand Y are Lindelo6f < XxY is Lindelof
and we will introduce some user of this theorem.

(R, ©)x(R, D) is not Lindel6f space, since (R, D) not Lindel6f,
(N, D)x(N, tcof) is Lindelof space, since (N, D) Lindel6f and (N, t¢of) Lindelof.

Example : If (R, 1)x(R, ) is Lindel6f space, what about the space (R, 1) ??
Solution : The space (R, t) must be Lindelof.

Corollary : Every quotient space from a Lindel6f space is Lindel6f.
Proof : let (X, t) be a Lindel6f space and ~ be equivalent relation on X, then the
quotient space is (X/~, 1p) such that p : X — X/~ ; p(x) = [X].
clear that p is continuous onto (see quotient space)
since X is Lindel6f = X/~ is Lindelof
(by theorem : The continuous image of Lindelof space is Lindelof)

Examples :
Every quotient space from (X, 1) is Lindel6f space.

Every quotient space from (R, t,) is Lindelof space.

Every quotient space from (X, t.s) is Lindelof space.
Every quotient space from (R, D) is not necessarily Lindel6f space.
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Chapter Four : Separation Axioms

Definition : To— Space

Let (X, t) be a topological space. Then the space (X, t)is called T, — space iff for
each pair of distinct points X, y € X, there is either an open set containing x but not y
or an open set containing y but not x. i.e.,

XisTo—space =< VXx,yeX ; xzy dUet ;(xeUaygU) v xXgUAayel).
If (X, 1) is not To— space, we define,

XisnotTo—space < dx,ye X ; xzy VUet ;(X,yelU) v(x,y¢gU).
The following figure show the definition of T,— Space :

X
« (0

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {1, 2}}. Is (X, 1), To— Space.
Solution : Must test every deference elements in X, satisfy the definition or not as
follows :

1#2=3Jopenset{1} et ;1e{1} A 2 ¢ {1}
1#3=3Jopenset{1} et ;1e{1} A 3¢ {1}
2#3=>3openset{l,2}er ;2€{1,2} A 3¢{1,2}
.. The definition is satisfy = (X, 1) is To— space.

X @

Example : Let X ={a, b, c} and t = {X, ¢, {a}}. Is (X, 1), To— space.

Solution : No, since b = ¢ = 7 open set containing b but not ¢ or an open set
containing c but not b.

Clear that X containing b, ¢ and ¢ open set not containing b, ¢ and {a} open set not
containing b, c. Therefore, (X, 1) is not To— space.

Example : Is (N, ter) To— Space.
Solution : Yes, we prove that in general since N containing infinite numbers :

Letn,meN ;n=m,toprove FopensetU e ty;meU A ng U orvice versa.
TakeU=N\{n} = meUA ngU
and U € 1 (since U= (N\ {n})° = {n} finite set by def. of 1)
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By similar way we can take : U=N\{m} = mg UA neU
and U e 1 (since U° = (N\ {m})° = {m} finite set by def. of 1)
The two cases similar and satisfy the definition = (N, 1) IS To— Space.

Example : In the space (X, I) if X is any set containing more than one element, then
(X, I) is not T, — space, since X contains more than one element we take X,y € X ; X
# Yy and A open set containing X but not y or an open set containing y but not x and ¢
open set not containing Xx, Y.

Example : The space (X, D) is To— space.

Solution : Letx,y € X ; x =Y, then {x} € D i.e., {x} open set (by definition D since
D =1P(X) ), hence x € {x} andy ¢ {x}. We can take {y} replace of {x} andy € {y}
and x ¢ {y}. Therefore, (X, D) is To— space.

Example : The usual topological space (R, t,) is To— space.
Solution : Letx,yeR ; x=#y €
Take U=(X—¢,X+¢€); e=|x-VY| XYy R

17
J

AT~

|
=>Uetq, A XxXeU A yegU U
s (R, 1) is T — space.

X

Theorem : Every metric space is To— space.
Proof : Let (X, d) be a metric space and X,y € X ; X #y
Letr=d(x, y); d(x, y) is the distinct between x and y Bi(x)

Take U = B,(X) ; U = B((x) is open ball with center x and radius r
L Uetg xeUayeg U,

14 1S @ topology on X induced by d (see page 33) y
- (X, d) is Ty — space.

Now, we introduce theorem gave an equivalent modules for definition T, — space.

Theorem : (X, t) is To—space iff {x} # {y} VX, ye X;x=Yy.

I.e., (X, 1) is T — space iff the closure of singleton sets is deference if the elements
are deference.

Proof : (=) Suppose that X is To— space, to prove {x}#{y} V X,ye X;x=y

w XisTo—space andxzy =>3Uet ;(xeUaygU)v(xgUAayel)
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Supposethat (xeUAy g U) = (XxeUAayeX-U)
X — U closed set since U open set = {y} c X-U
= {y} cX-U=X-U
(since X — U closed and X — U = X — U)
= {y} =« X-U A xeU
= {x}g& X-U
= {x} € X-U

By similar way if we take (x ¢ U Ay € U)

(<) suppose that {x} # {y} V x=ye X, toprove X is To— space

Suppose that X isnot To—space = (AXx,ye X; VUe1;xeU=yeU) (defof T,
— space) (i.e., every open set containing X its containing y)
letzeX ; ze{x} = mmmeemmeemeee (*)

= VUet;zeUAUN{X}I=0
(sincebytrue:zeA < VUert ;zeU A UNA=?)

But, UN{xX}#¢ = xeU (since the only element in {x} is X)
.. every set contains z must contains Xx. So, we have the following two statements :
every open set contains z must contains x and every open set contains X must contains
y.
.. every open set contains z must contains y.

=>VUet;zeUAUN{Y}#0d

=ze{y}  --mmememmeee- (*)

=>Vze{x} = ze{y} ={} c{y}
By similar way we prove {y} c {x}

{x}={y} C! contribution (since {x}#{y})
X is To— space.

Theorem : The property of being a Ty — space is a hereditary property.
Proof :
Let (X, 1) To— space and (W, ty) subspace of X, to prove (W, ty) is To— space

Let X,yeW;xzy = X,ye X (since W c X)
w XisTo—space = FUert ;(XxeUayegU) v xgUAayel)
= UNWetw (by def. of tyw)

XeUNWAyg UMW) vxgeUNWAyeUNW)
- (W, tw) is To— space.
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Theorem : The property of being a T, — space is a topological property.
Proof :
Let (X, 1) = (Y, 1') and suppose that X is To— space, to prove Y is T,— space
(X )Y, T) = 3f: (X, 1) > (Y, 1) ; f1-1, fonto, f continuous, f* continuous
Let y, Yo€Y 5 yizY, = fi(yw), fi(y) e X
-+ f onto function = f(y) = ¢, F(y,) = d
+ f 1-1function = Ilxe X fly)=x; and I x, € X ; Fy) = %,
and X; # X, and X1, X, € X
v XisTg—space = 3dUert ;(x;eUAX g U)v (X, ¢ UAX,el)
-+ ftis cont. or fopen = f(U) € T ; (f(xy) € f(U) A f(x,) ¢ f(U))
v (T(xy) ¢ f(U) A f(xp) € f(U) )
. YIs To— space
By similar we prove, if Y is Ty— space, then X is To— space.

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY isa Ty —space iff each X and Y are T, — space.
Proof :
(=) Suppose that XxY is a To— space, to prove that X and Y are T,— space
LetX, XoeX ; Xy =X, and Y, Yo €Y | Y1 # Yo
= (X, Y1), (X2, Y2) € XXY 5 (X1, Y1) # (X2, Y2)
- XxYisa To—space = Jabasic open set UxV € tx.y ;
(X1, Y1) € UXV A (X2, Y2) & UxV ) v (X1, Y1) € UXV A (X, ¥2) € UxV)
=3JdUet ;(Xx;eUnxogU)v X g UAXx,elU) = XisaTy—space
and3aIVert ;y1eVAY,2V)v (Y12 VAY,eV)= YisaTy—space.
(<) Suppose that X and Y are To— space, to prove XxY is a To— space
Let (X1, Y1), (X2, ¥2) € XXY ; (X1, Y1) # (X2, ¥2)
By def. product space = (X;, Xo € X A X1 #X2) A (YL Y2€Y A Y1 #Y))
- XisaTg—space =>3FUet ;(XeUAxy g U)v (X, ¢ UAXx,el)
“YisaTo—space =>3IVet ;(y1eVAY, ¢V)v(yi g VAY,eV)
= 3 UxV is abasic open set ; ( (X1, Y1) € UXV A (X2, ¥2) € UxV)
Vv (X1, Y1) € UxXV A (X3, ¥2) € UxV)
. XxY isa Ty— space.
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Definition : T, — Space

Let (X, 1) be a topological space. Then the space (X, t)is called T, — space iff for

each pair of distinct points X, y € X, there exists an open set in X containing X but

not y, and an open set in X containing y but not x. i.e.,

XisTi—space =< VX, yeX;XxzyaU,Ver; XeUaye U A(XgVAyeV).

If (X, 1) is not T, — space, we define,

XisnotT;—space<= 3Ix,yeX;xzyvU,Ver
(xeUayeU)v(xeUAayegU)

xeVayeV)vxgVAayeV).
The following figure show the definition of T, - space :

X U

oy

Remark : Every T, — space is To— space (i.e., Ty = T). But the reverse implications
does not hold (i.e., Tg :ﬁ T, ) and the following example show that :

Example : Let (X, 1) be a topological space such that X = {1, 2, 3} and t = {X, ¢,
{1} {1 2}}.

Solution : Clear (X, 1) is To— space (see page 76).

But, (X, 1) is not T, — space, since 2 = 3 and 3 open set {1, 2} in X containing 2 but
not 3, but 7 open set in X containing 3 but not 2, since the only open set containing 3
Is X and X containing 2 too.

Remark : If (X, t) is T, — space, then its not necessary to test that the space is To—
space, since every T, — space is a To— space.

Example : The space (X, D) is T, — space.
Solution :

Letx,ye X;xzy=3{x}{y}eD;, xe{x}rye{XxHhrxe{y}rye{y}
= (X, D) is Ty — space.
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Example : Is (N, 1) T1— space ??
Solution : Yes,
Letn,meN ;n=m,take U=N\{m}, V=N\{n}
=U,Verty  (since U= (N\{m})° = {m} finite set by def. of 1)
(since V° = (N\ {n})° = {n} finite set by def. of 1)
> MmheU=N\{mM}amegU)AmegV=N\{n}A meV)
= (N, Teof) is T1— space.

Example : The usual topological space (R, 1) is a T, — space.

Solution :

Letx,yeR ;X#y,e=|X-VY]| U

Take U=(X—-g,Xx+¢),V=(y—g,y+g) ( Xie Y R

U Ver ;xeUaygU)AXgVAayeV).
- (R, 1) is T — space.

Theorem : Every metric space is a T, — space.

Proof : Let (X, d) be a metric space and X,y € X ;X =y X
Take U=B/(X), V=B(y) ; r=d(x,Yy) B:(X)

U Ver;xeUaygU)AaXgVAayeV)
s (X, d) is T, — space.

Theorem : (X, 1) is T, — space iff {x} is closed V x € X.
I.e., (X, 1) is T, — space iff every singleton set in X is closed.
Proof : (=) Suppose that X is T, — space, to prove {x} closed V x e X
I.e., X — {x} open set, we must prove X — {x} contains a nbhd v y e X — {x}
Letye X—{Xx} = x=Vy
w XisTy—space = FU,Vyet; (XeUAayegU)Aa(Xe VyaryeV,)
=>YyeVy, A XegV,
= D3N Vy =0
= Vyc X-{X} AyeV,
= Vyc X-{x} VyeX-{x}
- X—={x} contains a nbhd V y € X — {x}.
o X—{x} open set = {x} closed V x e X.

Ag.;n)mum‘)_) Wﬁujﬁuuuyd 84



Chapter Four 2023-2024 Separation Axioms

(<) suppose that {x} closed V x € X, to prove X is T;— space
Letx,ye X; xzy = {x}, {y} are closed sets

= X —{x}, X—{y} are open sets
SayU=X-{y},V=X-{x} = xeUayegU)A(XxgVAyeV)
- (X, 1) is T, — space.

Corollary : If X is a T, — space, then every finite set is closed.
Proof : Let A be a finite set in X
= A={Xy, ... . xn} = UL {x;}
(X, 1)isTy—space = {Xi}e¥F Vi
= UjL,{x;} closed
— Alsaclosed

Corollary : If X is finite set and (X, t) is a T, — space, then t = D.
Proof : To prove t=D must we prove (V x € X = {x} € 1), i.e., every singleton
set {x} is open.
Letx e X

- X finiteset = X -—{x} finite set

. XisTy—space = X —{x} closed set

(by previous corollary : If X is T;— space, then every finite set is closed)
= {x} open
. t=D.

Remark : From the previous corollary the only topology that make the space (X, 1)
Is Ty — space when X is finite set is D. For example if X = {1, 2, 3} and we know
there is 29 deference topology on X (see page 2) so that there is 28 topology on X is
not T, — space except one topology is D. Therefore, we not try to give an example for
space is T;— space on finite set and the topology not D.

Now, we introduce some corollaries on the theorem in page 81 and your proves
is directed from theorem.

Corollary (1) : (X, 1) is T, —space iff {x} = {x} V xe X.

Corollary (2) : (X, 1) is Ty —space iff {x} =({F;Fe ¥ A xeF} VxeX
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Corollary (3) : (X, 1) is T, —space iff {x}" = ¢ V x € X.

Corollary (4) : (X, 1) is T, — space iff {x}" = {x} V xe X.

Corollary (5) : (X, 1) is T, — space iff {x} c {x} V xeX.

Corollary (6) : (X, 1) is T, — space iff {x} = ¢ V¥ x e X.

Theorem : The property of being a T, — space is a hereditary property.
Proof :

Let (X, 1) T,—space and (W, ty) subspace of X, to prove (W, tw) T1— Space

Letx,yeW ; Xy = X, yeX (since W c X)
o Xis Ty—space = FU,Vert;xeUanygU)A(XxegV AayeV).
= UNWA VN Wery (by def. Ty )

= XeUNWAYygUMMWIAXegVOAWAYeVNW).
- (W, 1w) isa T,— space.

Theorem : The property of being a T, — space is a topological property.
Proof :

Let (X, 1) = (Y, ') and X is a T,;— space, to prove Y is a T, — space

(X )Y, 7)) = 3f: (X 1) > (Y, 1) ; f1-1, fonto, f continuous, f* continuous
Let yi,Yo€Y 5 yizY, = Fiy), Fi(y.) e X

-+ f onto function = f(y1) = ¢, F1(y2) =

s f 1-1function = JlxeX;fly)=x, and A x, € X ; F(y) =X,

and X; # X, and Xg, Xo € X
s XisTy—space = 3U, Vet ;(x1eUnxagU)AXr gV AXeV)
-+ fis cont. or f open = f(U), f(V) e T ; (f(x1) € f(U) A f(x2) & f(U))
A (T(x) 2 £(V) Af(x) € £(V) )

- Yis T{— space

By similar way we prove, if Y is T, — space, then X is T, — space.
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Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY isa T, —space iff each X and Y are T, — space.
Proof :
(<) Suppose that X and Y are T, — space, to prove XxY isa T,— space
Let (X1, Y1), (X2, Y2) € XXY 5 (X1, Y1) # (X2, ¥2)
By def. product space = (X;, Xo € X A X1 #X2) A (YL Y2€Y A Y1#Y))
- XisaT;—space = 3U,Uyet ;(XzeUiaXy g U) A X g Uy AXyeUy)
“YisaT;—space =3IV, Vet ;(YieViaYg V)AL & VanrY, € Vo)
= 3 basic open sets U;xVy, U,xV,
(X1, Y1) € UixV1 A (X2, Y2) & UixV1) A (X1, Y1) € UaxVa A (Xz, Y2) € UpxV3)
- XxYisa T,— space.
(=) Suppose that XxY is a T,— space, to prove X and Y are T, — space
LetX, XoeX ; Xg =X and Y, Yo €Y | Y1 #Yo
= (X1, Y1), (X2, Y2) € XXY ; (Xg, Y1) # (X2, Y2)
wXxYisaTi—space =3 U,V €ty ; (X, Y1) € UA (X, Vo) € UA (X, ¥2) € VA
(X1, Y1) ¢ V that is mean 3 basic open sets U;xV1, Uo,xV5 € Ty, |
((Xq, Y1) € UixV1 A (X2, ¥2) € UixV1) A (X1, Y1) € UaxVo A (X, V2) € UpxV,)
=AU, Uet ; (Xx1eUiaXo g U)A(Xy € Uy AaX,eU,) = XisaT,—space
and 3V, Voet ;(YieViaY, g V)A (Y1 € VoAaY,€V,) = YisaT;—space.
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Definition : T,— Space or Hausdorff Space

Let (X, t) be a topological space. Then the space (X, t) is called a T, — space or

Hausdorff space iff for each pair of distinct points X,y € X, there exist open sets U

and Vsuchthatx e U,y € V,and UV =¢. i.e,,
XisT,—space =< VXx,yeX;xzyaU,Ver; xeUayeV),UNV=0

If (X, 1) is not T,— space, we define,

XisnotT,space @ dxX,yeX;xzyvU Ver;,UNV=09,(X,yeUvXxyeV)

The following figure show the definition of T,— space :

e

Remark : Every T,— space is T, — space (i.e., T, = T;). But the reverse implications
do not hold (i.e., T, qé T, ) and the following example show that :

Example : Take cofinite topology (N, Tcof).

Solution : Clear (N, ter) is T;— space (see page 81).

But, (N, 1) IS not T, — space, since if n=m, take U=N\{m}, V=N\{n}, but U
NV # ¢. Therefore, T, 3 To.

Remark : If (X, 1) is T, — space, then not necessary test that the space is T, — space
and T,— space, since every T,— space is T, — space and every T, — space is To— space
i.e., (T2 = Tl = To)

Example : In the space (X, I) if X is any set containing more than one element, then
(X, 1) is not T, — space (see page 77), so that it's not T, — space and not T,— space.

Example : The space (X, D) is T,— space.
Solution :

Letx,ye X ;xzy={x} {y}eD; {Xx}N{y}=9¢,xe{x} rye{y})
= (X, D) is T,— space.
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Example : The usual topological space (R, t,) is T,— space.
Solution : Letx,yeR ;x¢y,s=%|x—y|

€
Take U=(X—-¢,Xx+¢),V=(Y—¢g,y+¢g) ¢ Xﬁ( —) R
U Ver;UNV=0,XeUAnyeV) U Vv

= (R, 1) is T,— space.

Remark : In the previous remark (p. 82) we show that if X is finite set and t # D,
then (X, t) is not T, — space and we say her is not T, — Space. i.e., the only topology
make (X, t) is T,— space if X is finite set is D.

Theorem : Every metric space is T,— space.
Proof : Let (X, d) be ametricspaceand X,y e X ; x#Yy

U
Take U=B,(x), V=B/(y) ; r=— d(x,y)

\Y/
U Very; UNV=¢,(xeUryeV) @@

- (X, d)is T, — space.

Theorem : (X, 1) is a T, — space iff the diagonal A = {(x, X) € XxX ; x € X} is a
closed subset of the product XxX.
Proof : (=) Suppose that X is T,— space, to prove A closed in XxX
I.e., XxX — A open set, we must prove XxX — A contains a nbhd V (X, y) € XxX - A
Let (X,y) e XxX-A = (X,y) ¢ A (def. of deference)
= X#Y (since A has equal coordinate)
wXisaT,—space = dU,Ver;UNV=0¢0,XeUAnyeV)
= UxV € Bx.x € txxx (by def. product space)
= UxV open setin XxX and
UxV < XxX—-A A (X,Y) € UxV (sinceUNV =9¢)
Since, iIf UXVE XxX-A= I (X,X) e A =>xeUAa xeV C!l (contridition)
o XxX —Acontainsanbhd vV x e XxX —A
= XxX — A € Txxx
= Aclosed in XxX
(<) Suppose that A closed in XxX, to prove X is T,— space
Letx,ye X;xzy = (X,y) ¢ A (by def. of A)
= (X,y) e A°=XxX - A
.~ A closed set = XxX — A open set
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=3I UxV ;U,Vetan(X,y) e UxV,UxVc XxX-A, xelU,yeV
=>UxVNA=6 (i.e., A element in UxV has equal coordinate)
=>UNV=9¢

- (X, 1) is T,— space.

Theorem : The property of being a T, — space is a hereditary property.
Proof :

Let (X, 1) T,—space and (W, tw) subspace of X, to prove (W, tw) T,— space

Letx,yeW;xzy =X, yeX (since W c X)
o Xis Ty—space = AU, Vet;UNV=0¢,XeUAayeV).
= UNWA VNWEe 1y, (by def. of 1)

unwnunw=UNAV)NW=¢NW=4¢
and xeUNWAyeVNOW).
o (W, tw) is T,—space.

Theorem : The property of being a T, — space is a topological property.
Proof :
Let (X, 7) = (Y, t') and suppose that Y is T,— space, to prove X is T,— space
(X 1) (Y, 1) =3 (X 1) > (Y, 1) ; f1-1, fonto, f continuous, ™ continuous
Let X, X, € X ; X1 #X, = f(X), f(Xp)eY
.+ f onto function = f(xy) = d, T(y2) =0
 fl-lfunction =3ly,eY ;f(X)=y, and3A'y,eY ;f(X) =Yy,
andy; #Y, , Yy, Y. €Y
S YisT,—space =3V, Vet ;Vi[IVe=0,(Y1eViAY, € V)
-+ f is continuous = f (V) = Uy, f (Vo) = Uy et ;
Ui U = F5 (V) N (VL) = FH (VN Vo) = £7(0) = ¢,
(xpe Ui A X e Uy)
. Xis T,— space
By similar way we prove, if X is T,— space, then Y is T,— space.

Ag.;n)mum‘)_) Wﬁujﬁuuuyd 90



Chapter Four 2023-2024 Separation Axioms

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY isa T, —space iff each X and Y are T, — space.
Proof :
(<) Suppose that X and Y are T,— space, to prove XxY is T,— space
Let (X1, Y1), (X2, Y2) € XXY 5 (X1, Y1) # (X2, ¥2)
By def. product space = (X;, Xo € X A X1 #X2) A (YL Y2€Y A Y1#Y))

- XisaTy—space =3I U, Uyet ;UiNU=d,X€ Ui A XpeUy)

" YisaT,—space =3IV, Vet ;ViVo=0,Y1eViA V€V

= 3 basic open sets U;xVy, U,xV, ;
(UixV1) N (UaxV2) = (U N U2) x (Vi V) =0 x 0=,
(X1, ¥1) € UixV1i A (X2, Y2) € UaxV3)
- XxYisa T,— space.
(=) Suppose that XxY is a T,— space, to prove X and Y are T,— space
LetX, XoeX ; Xg =X and Y, Yo €Y | Y1 #Yo
= (X1, Y1), (X2, ¥2) € XXY (X1, Y1) # (X2, Y2)
XxYisT,—space = 33U,V € Tyy ; (X, Y1) e UA (X2, ¥2) e VAUV =06,
that is mean 3 basic open sets U;xV1, UoxV; € Ty ;U1xVy, UoxVs € Ty |
(UixV1) N (UaxV3) = ¢, ( (X1, Y1) € UixV1 A (X2, Vo) € UxxV,)
=3U;,Uet ;UiNU,=¢,(xeU;AX,€U,) = XisaT,—space
and 3V, Vet ;ViNVo=0,(Yy1eViAY,eV,) = YisaT,—space.
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Remark : We study in mathematical analysis real sequences and their convergence
and we know if the real sequences is convergence, then has a unique limit and this is
especial case since their domain is real numbers with usual topology (R, t,). But, if
we go to the topological spaces in general and define the convergence sequences in
topological space we found the sequences is convergence but their limit not unigue.
In mathematical analysis (3" stage) we use the usual topology only and this T, —
space and we will introduce illustrate to this problem with definitions and theorems.

Definition : Let (X, d) be a metric space. We called the function S: N — X isa
sequences in X and denoted to image of element n in N which is S(n) by S, , so that
the sequence is Sy, Sy, ..., Sp, ... ;neN or (Spnen -
We called the sequence is convergence to element X, in X (denoted by S, — Xo) if
the following condition satisfy :

Ve>0 dkeNstn>k; S,e N(xp)
such that N.(Xo) is open ball in X with center X, and radius ¢.
this means that the sequences (S,) convergence to limit xq in X if every open ball with
center X, contains all elements of sequences except finite numbers of elements.

Notes that the definition especial of metric space, so we now generalization
this definition to topological space such that we replaces open ball by open set since
the open ball no exist in topological space because there is not distant.

Definition : Let (Sy)ney be @ sequences in topological space (X, 1) (i.e., S: N— X).
We called the sequence (S,)nen IS CONvergence to Xq in X (denoted by S, — Xo) if
the following condition satisfy :

Ss—/ Xy < VUet ; xpeU FkeN;S,eU vn=k
I.e., every open nbhd of X, contains all elements of sequences except finite numbers.

Remark : If (X, 1) is not T, — space, then the convergence sequences may be has
more than one limit point.

Example : Let X = {1, 2, 3} and t = | = {X, ¢} such that (X, 1) is topological space.
Let (Sh)nen be @ sequences in X such that S, = 1 for all n

Solution : Clear S, — 1,S,— 2,and S, — 3 ??

To clear that apply the definition ; S, — 1, since the open nbhds of 1 is X only
because it’s the unique open set contains 1 and S, — 1 since X contains all
elements so its contain the sequence. Therefore the definition satisfy.
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By similar way S, — 2 and S, — 3 since X the unique open set that contains 2 and
also contains 3 and X contains the sequences too.

Question : Give an example to convergence sequence in topological space has five
deference limit points.
Answer : Let X ={1, 2, 3,4,5,6} and T = {X, ¢, {6}} such that (X, 1) is topological
space.
Define (Sy)ney as follows S, =3 V n e N, so that

Sis— 1,5, —2,S5,—3,S,—4,S,—5,butS, /A6
Since {6} is open nbhd for 6 , but S, ¢ {6} V n e N, because S, =3 and 3 ¢ {6}.
On the other hand, S, — 1, 2, 3, 4, 5 since X the unique open set that contains 1, 2,
3,4,5and X contains 3i.e.,,S, e XVneN.

We can change the previous question to make give an example to convergence
sequence has ten or seven or any known number deference limit point. By taken X
has 11 element (if require 10 deference limit point) and define topology on X
contains X, ¢, and singleton set contain one of the elements of X and define constant
sequence such that the constant number is one number of elements of X not in
singleton set. Therefore, we have the require.

Question : Give an example to convergence sequence in topological space has
infinite number of deference limit point.
Answer : Let X = R (or X = any infinite set) and take t = | = {X, ¢} and take any
sequence in R for example :
S, = {\/i if nekE
0 if neo
Notes that the sequence (Sy)nen 1S NOt convergence in (R, t,).

But in (R, I) is convergence and has infinite numbers of limit points, since every real

number is limit point because R the unique open set and R contains v2 and 0 and R
contains all elements of the sequences (i.e., every open nbhd for all element in R

contains all elements of the sequences) and this means in the definition of
convergence in metric space that for all real number is limit point of the sequence

(Sn)neN-

Remark : If (X, 1) is T, — space, then every convergence sequence in X has unique
limit point and this illustrate that consider the limit point if exist, then its unique in
mathematical analysis (3" stage), because we study the metric space only and special

Ag.;n)mum‘)_) Wﬁujﬁuuuyd 93



Chapter Four 2023-2024 Separation Axioms

case (R, | |) and we prove that every metric space is T, — space (see page 86), so that

every convergence sequence in metric space has unique limit point and we will
introduce the theorem show this :

Theorem : If (X, 1) is T, — space, then every convergence sequence in X has unique
limit point.
Proof : Let (S,)nen be convergence sequences in X
Suppose thatS,— x and S, — Yy ;xzyeX
- Xis Ty—space = 3U,Vet;UNV=0,XeUAnyeV).
v Sy—XxandxelUet = Fk;eN;S,eU Vn=>k;
v Sp—yandyeVetr = Ik, eN;5,eV Vnxk,
. elements of sequence is infinite (since domain = N), then there are elements
common between U and V (i.e., UV = ¢). CI! contradiction
.. every convergence sequence in X has unique limit point.

We will use idea of convergence sequence in topological space and idea axiom
of T,— space with important continuous concept in topology :

Theorem : If f: (X, 1) — (Y, ') is continuous function and (S,).n IS CONvergence
sequence in X such that S, — x, then f(S,)) — f(x).
I.e., The continuous function maps convergence sequence in domain to convergence
sequence in codomain and their limit point is image of limit point in domain.
Proof : To prove f(S,) — f(X) in Y
Let V be an open nbhd of f(x) in Y, i.e., f(X) eV e
-+ f continuous = (V) e 1, i.e., f (V) open set in X
f(x) eV — x efH(V)
— (V) be an open nbhd of x in X
v Sy—xandxefi(V)etr = IkeN;S,ef (V) Vnxk
Take image for S, and for f *(V), we have
= FkeN;f(S)eV Vnxk
i.e., V contains all elements of sequence except k of these element.
- (S, — f(x).

Now, we prove one of the important theorem which connected between the
concept axiom T,— space and concept compactness.
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Theorem : Every compact set in T,— space is closed.
Proof : Let (X, t) be T, —space and A — X ; A compact in X
To prove Ais closed in X, i.e., X — A open set in X
we must prove X — A contains an open nbhd Vv xe X-A
(le, vxeX-AdUet;xeUcX-A)
Letxe X-A=>xegA=x#aVvVacA
- Xis Ty—space = U, Vaet; U, Va=0,XeU;naeVa) VacA.
We have two family of open sets are {U,}aca (every element in this family contains x)
and {V.}aca (every element in this family contains one of the elements A) and every
U, corresponding V, such that U, (] V. = ¢.
= {V.}aca Open cover of A, i.e., A < Uaea Va
" Aliscompactset =3 a,...,a, ;AcUiL, V,,
Therefore, there is a finite family {U,}.ca corresponding the finite family {V, }iL,
which is {U, }iL;.
.+ every U, contain x, then x € NiL; Uy,
- every U, is open set, then N, U, is open set contain x
(second condition of def of top.)
Say, U=NiL; U, =>xelUen

On the other hand Ui, V,, is open set (third condition of def. of top.)
Say,V=UiL; Vo, =>AcVer
Notes that,
UNV=2¢6 (since U; M Va=9)
=>ANU=¢ (sinceAcVandU NV =9¢)
>UcX-A

=>xXxeUcX-AAUer
= X-A opensetin X VxeX-A
— A closed set in X.

Finally, we introduce one of important theorem which connected the concepts
continuous, T,— space, and compactness with homomorphism concept.

Theorem : If f: (X, 1) — (Y, t') is continuous bijective function and X is compact
space and Y is T,— space, the f is homomorphism.

Proof : It is enough to prove f is closed function

Let F be a closed set in X
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"~ X'is compact and F closed in X = F compact in X
(by theorem : A closed subset of compact space is compact)
- fis continuous and F is compact in X = f(F) is compact in Y
(by theorem : A continuous image of compact set is compact set)
Y is T, —space and f(F) compact in Y = f(F) is closed in Y
(by previous theorem : Every compact set in T,— space is closed)
.. Tis closed function = f is Homeomorphism.

In chapter three (compact space) we say the intersection of two compact sets
not necessary compact set (see page 68) and intersection closed set and compact sets
not necessary compact set, but this statements are satisfy if we add the condition that
T,— space and the following theorems show this.

Theorem : If A'is closed set and B is compact set in T,— space (X, 1), then A( B is
compact.
Proof :
.+ Xis T, — space and B compact in X = B is closed in X

(by theorem : Every compact set in T,— space is closed)
- Aand B closed sets = A B closed seti.e., A(1Be &

(second condition of def of top.)

AN BcBie., A B subspace of B and

A Bclosed in Band B compact = A[) B compact
(by theorem : A closed subset of compact space is compact)

Corollary : If A and B are compact sets in T,— space (X, t), then A () B is compact.
Proof :
.+ Xis T, —space and A compact in X = A'is closed in X
(by theorem : Every compact set in T,— space is closed)
.+ X'is T, —space and A closed and B compact in X = A () B compact
(by previous theorem)
Remark : If X 'is T,— space and compact, then X o A closed << A compact.
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Definition : Regular Space

Let (X, t) be a topological space. Then the space (X, 7) is called a Reqular Space iff
for each closed set F — X and each point X ¢ F, there exist open sets U and V such
thatx € U,Fc V,and U )V = ¢ (denoted by R— space). i.e.,
XisR-space o VxeXVFeF;xegF3aUVer;UNV=¢,xXecUAFcCV)
If (X, 7) is not R— space, we define,

XisnotR-space < dxeX3iFeF ;xgFAVUVer;UNV=9¢,
xeUAFcU)v(xeVAFcCV)v
xXeUAFZV)v(XgVAFZV).

The following figure show the definition of R — space :
X

OO

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {2}, {1, 2}}. Is (X, 1) R — space.
Solution : First, find the family of closed sets :
F={X, ¢, {2, 3}, {1, 3}, {3}}
Second, take every closed set and every element not belong to it as follow :
Take X, but every element belong to X
Takepand 1,2,3¢p=>3FJU=XandV=¢suchthatl, 2,3 e X=Uanddpc o=V
and X [ ¢ = ¢, so the definition satisfy.
Take F={2, 3} and 1 ¢ F = the only open set that contains F is X, but X (YU = ¢
, S0 the definition not satisfy. .. (X, 1) is not R — space.

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {2, 3}}. Is (X, t) R — space.
Solution : First, find the family of closed sets :

F={X¢,{2,3}, {1}} =1
and X, ¢ in previous example satisfy the definition (in general X, ¢ satisfy the
definition in every example).
Take F={1}closedset;2,3 ¢ F=3U={2,3}andV={1}=F;U,Ver

= UNV=¢,;23cUAFcV (the definition satisfy)
Take F={2,3}closedset;1 ¢ F=3U={1}andV={2,3}=F;U,Ver
= UNV=¢;1eU A FcV (the definition satisfy)

- (X, 1) is R —space.
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Remark : In previous example notes that X is not T, — space, not T, — space, and not
T,—space, so the R —space is not necessarily To—space or T, —space or T,— space. i.e.,

RH#To AR$H T ARPHT)

Remark : If T = % in any topological space (X, 1), then its R — space, since :
If Fclosedsetin Xandx ¢ F=>3U=FandV=F ;FcF=UxeV=F FNF

= ¢. So the definition of R — space satisfy.
From this remark we have (X, 1) and (X, D) are R — space.

Example : Is cofinite topology (N, t.f) R — space.
Solution : No. Since A two nonempty disjoint open sets satisfy the definition satisfy
of R — space, for example :
If X= Nand F={1, 2, 3}and x =4, then x ¢ F and if we assume there exists U, V
€ Tofand UV = ¢, then
UNOV)=¢" = uyv=X

finite finite finite C!l' contradiction

Theorem : The space (X, 1) is regular (R — space) iff for each x € X and each open
set W containing X, there exists an open set U suchthat x e U c U c W.
Proof : (=) Suppose that X is R — space.

Letxe X, Wet; xXeW =xgX-Wand X-WeF
wXiIsSR-space=3U,Vet;UNV=0¢,XeUAX-WcV)

"UNV=9 = UcX-V
We have, Uc X-V and X-VcW

= Uc X—-V (sinceAcB = AcB)

= UcX-V (since X =V closed = X -V =X-YV)
= UcX-V A X-VcW

= UcW

—=xeUcUcW (since Ac A)

(«<=) Suppose the condition of theorem satisfy, to prove X is R — space
Let xe Xand F closed setin X ; x ¢ F

=>XeX-Fer (since F closed)
=3JUert;xeUcUcX-F (byhypothesis)
= UcX-F

= FcX-U (sinceAcB < B°c A
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But, X — U open since U closed, say X - U =V
=>XeUAFcSVAUNV=¢ GinceUcUandUNOX-U=¢=>UNV=0)
. Xis R —space.

Theorem : Every metric space is R — space.
Proof : Let (X, d) be a metric space = (X, t4) the topology derivative from this
metric. We will prove this theorem by using previous theorem :
Let x e X and W open set ; x e W
Toprove 3U openset; xeUcUcW or xeUcCI(U)cW
"~ X € W = 3 open ball of x contains in W (since W € 1y)
=3IpeR” ; NX p)cW
(since the set is open < contains open nbhd for every element)
TakeqeR"™ ; 0<qg<p = N(X q) = N(X, p)
(since the first half ball similar than second half ball and the center is unique)
= N(x, q) = CI(N(x, 9)) = N(x, p) (since g <p)
since N(x, ) ={y € X; d(x,y) <qg}and CI(N(x, q)) ={y € X ; d(x,y) <q}
= N(x, @) < CI(N(x, q)) c W  (since N(x, p) = W and CI(N(x, q) = N(x, p))
. every open ball in metric space is open set = N(X, q) open set, say U = N(X, q)
=xeUcCIU)cW
- (X, d)is R —space.

Remark : There is a method to prove previous theorem by using definition of R —
space, but this prove is shorter.

Remark : Since (R, 1) is metric space, then (R, t,) is R — space.

Theorem : The property of being a R — space is a hereditary property.
Proof : Let (X, t) R —space and (W, tw) subspace of X, to prove (W, tw) R — space
Letx e W and E closed setinW ; x ¢ E
= xeX (since WcX) AdFe?d ; E=FNW (i.e., F closed in X)
- Xis R—space =3U,Vet;UNV=0,XecUAFcV)

= UNW A VOWeny, (by def of Ty )
unwnNnvaw=UNV)AW=¢NW=9¢
and xeUNW (sincexeU A xeW)

A EcVAW). SinceE=F(W=EcF AEcCW
= EcVAECW
= EcVNW

o (W, tw) IS R —space.
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Theorem : The property of being a R — space is a topological property.
Proof : Let (X, 1) = (Y, t') and suppose that X is R — space, to prove Y is R — space
XK t)z(Y,t) =3 (X 1) > (Y, 1); f1-1, fonto, f continuous, f open
Let yeY andFe ¥ 'ie,FclosedinY ; yeF
.~ fonto function = 3Ixe X ;f(X)=y
-+ fcontinuous = f*(F) € Fi.e., f'(F) closed in X ; x & f(F) (since f(x) =y ¢ F)
* XisR—space =3U,Vet:UNV=¢,xcUafF)cV)
. f open = f(U), f(V) e
-+ fis1-1 Aonto = f(x) € f(U) A f(f'(F) < f(V)
= yef(U) A Fcf(V) (sincey=f(x) A f(f'(F))=F)
SUNV=¢e = fUNFV)=FUNV)=1(¢)=¢
. XIS R — space.
By similar way we prove, if Y is R — space, then X is R — space.

Remark : The continuous image of R — space is not necessarily R — space. i.e., if f:
(X, 1) = (Y, 1) is continuous onto function and X is R — space, then Y not
necessarily R — space and the following example show this :

Example : Letf: (R,D) > (R, tf) ; f(X)=x VxeR.

f is continuous function since the domain (R, D) is discrete topology (see page 37)
and clear f is onto and in general (X, D) is R — space (i.e., (R, D) is R — space), but in
general (X, 1) IS Not R — space (see page 95) (i.e., (R, tcf) IS NOt R — space).

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY is a R —space iff each X and Y are R — space.
Proof : (<) Suppose that X and Y are R — space, to prove XxY is R — space
Let (x,y) e XxY and A closed setin XxY ; (X,y) ¢ A
= 3 F closed set in X and F' closed set in Y ; FxF' < A and (X, y) ¢ FxF'
=>XgkFeF A yeFe¥
- XisaR-space =3dU, Vet ;UNV=¢,XcUA FCV)
“YisaR-space = 33U, Vet ;UNV'=0¢,(yeU A FcV)
=
UxY, VXY € txy ; (UXY) N (VXY)=(UNV)xY=doxY=¢,
((X,y) e UxY A FxF' cVxY)
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Or
XxU', XxV' € Ty 3 (XKUY N (XxV)=Xx (U NV)=Xxd=9,
((X,y) e XxU' A FxF' < XxV")
In both cases we have XxY is R — space.
(=) Suppose that XxY is R — space, to prove X and Y are R — space
LetxeX andFe#; x¢gF and yeY andFe¥"; yg F
= (X,¥) € XxY and FxF' € Fx.v; (X, y) ¢ FxF'
 XxY isaR —space = I UxV, UxV' e tx.v ; (UxV) N (U'xV) = ¢,
((X,y) e UxV A FxF' < FxF")
=3JdU,Uet;UNU=¢,xeUAFcU) = XisR-space
and 3V, V'et ;VOAV'=0,(yeVAF V) = YisR-space.

Remark : Notesthat: (ToAR A T:AR A T.AR)

Example : Let X = {1, 2, 3} and © = {X, ¢, {1}, {2}, {1, 2}} ; (X, 1) topological
space.

Solution : Clear (X, 7) is not R — space (see page 94)
On the other hand, (X, 1) is To— space (Check that !1)
So, we have T,— space, but not R — space.

Example : Take cofinite topology (N, T).

Solution : Clear (N, 1) not R — space (see page 95).
On the other hand, (N, tef) IS T1— space (see page 81).
So, we have T, — space, but not R — space.

Definition : T;— Space
Let (X, 1) be a topological space. Then the space (X, 1) is called a T; — Space iff its
regular and T; — space. i.e.,

T3 —space = T; — space + R — space

Example : The space (X, D) is Ts;— space, since its T, — space and R — space.

Example : The space (X, 1) ; X contains more than one element is not T; — space,
since its not T, — space and R — space.
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Example : In the cofinite topology (X, 1), If X is infinite set, then its not T; —
space, since its T, — space and not R — space.

Example : Let X = {1, 2, 3} and t = {X, ¢, {1}, {2, 3}}. The space (X, 1) is hot T5—
space, since its not T, — space and R — space.

Example : The usual topological space (R, t,) is T;— space, since its T, — space and
R — space.

Theorem : Every metric space is Tz — space.
Proof : Since every metric space is T;— space and R — space.

Theorem : The property of being a T; — space is a hereditary property.
Proof : Since the property T, — space and R — space are a hereditary property.
Then T3 — space is a hereditary property.

Theorem : The property of being a T; — space is a topological property.
Proof : Since the property T, — space and R — space are a topological property.
Then T; — space is a topological property.

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY is a T; —space iff each X and Y are T; — space.

Proof : We prove in previous theorems : That the product space XxY is T, — space
and R —space iff each X and Y is T, —space (see page 84) and R —space (see page 97).
Hence, we have the product space XxY is a Tz — space iff each X and Y are T; —
space.

Remark : The continuous image of T — space is not necessarily T; — space. i.e., if f
- (X, 1) > (Y, t') is continuous onto function and X is T3 — space, then Y not
necessarily T; — space and the following example show this :

Example : Letf: (R,D) > (R, 1) ; f(x)=x VxeR.

f is continuous function since the domain (R, D) is discrete topology (see page 37)
and clear f is onto and in general (X, D) is Ts — space (i.e., (R, D) is T; — space), but
(X, 1) is not T3 — space (see page 98).
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Theorem : If (X, 1) isa T; —space, then X is a T, — space.

Proof : Suppose that X is a Tz — space (i.e., ,T; — space and R — space), to prove X is

T,— space.

Letx,ye X; xzy

. Xis Ty—space = {x}, {y} € # (by theorem, X is T;-space < {x} closed V x € X)
= X ¢ {y} (since X #y)

w XiISR—-space=3U, Vet ;UNV=0¢,xecU A {y}cV)
= XeU A yeV

- (X, t)isaT,— space.

In previous theorem we take x ¢ {y} and by the similar way we can take y ¢
{x} and we have the same result.

Remark : From above theorem we have :
T3—space = T,—space = T;—space = T,— space

y: ¢ i

Remark : There is another method to express on the above theorem as follows :
If (X, 1) is R —space and every singleton set in X is closed, then X is T, — space.

Example : Let X=Nandt={U c X ;1 U} {¢}. Is (N, t) T3 —space ??
Solution : We test (N, 1) is T, —space ?? and R — space ??

Letx,yeN ; x =Yy, to find open set containing x but not y, and open set containing y
but not x.

Suppose x = 1, then for any y € N such that x = y there is no open set contains y but

not x (since definition t is every open set must contains 1 if it's not empty set), so X
not T, — space. Furthermore, X is not R — space.
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Definition : Normal Space
Let (X, t) be a topological space. Then the space (X, t) is called a Normal Space
(denoted by N — space) iff for each pair of closed disjoint subsets F and E of X, there
exist open sets U and V suchthat Fc U, EcV,and UV = ¢. i.e,,
XisN-Space @ VF,Ee¥;F(NE=¢ 3U,Ver;UNV=0,(FCUAECV)
If (X, 7) is not N — space, we define,
XisnotN-Space<3IF,Eec¥ ;FNE=¢ VU Ver;UNV=9¢,

FE UAEZ V)V(FEVAEZU).
The following figure show the definition of N - space :

X

Example : Let X = {1, 2, 3} and t = {X, ¢, {1}, {2}, {1, 2}}. Is (X, t) N — space.
Solution : First, find the family of closed sets :
F={X,¢.{2,3}, {1, 3}, {3}}

Second, take every two closed sets there intersection is empty :
Notes that any two closed sets their intersection is nonempty, since all closed sets
contains 3 except ¢. Therefore, the definition of N — space is satisfy.
We can prove this as follows :
[VF,EeF;FNE=¢] = [IU,Vet; UNV=6¢,(FcUAEcCV)]

False statement either false statement or true statement
In two cases we have (F = F=T) and (F = T =T), therefore the definition of N —
space is satisfy.

Remark : In the previous example notes that (X, t) is not R — space and its N — space
so that :
( N —space £& R — space)
Also, in this example (X, 1) is not T, — space and not T, — space so that :
(N —space 75 T; — space) A ( N —space 7 T, — space)
Furthermore,
(R —space & N —space) A ( T, —space & N —space) A ( T, —space 75 N — space)

Remark : ( To— space 74 N — space) A ( N — space 4 T, — space)
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Example : The space (N, tef) IS To — space and not N — space, since there is two
nonempty disjoint closed sets, but there is no two nonempty disjoint open sets.
Notes that too (N, tef) IS T — space and not N — space.

Example : The space (R, 1) is not Ty — space, since R is the only open set contains
elements and its contains all elements. But (R, 1) is N — space since the closed sets are
F=Rand E=¢only,and R (] & = ¢ and the open sets are R and ¢ and R < R and ¢

c 0.

Example : The space (X, D) is N — space, since every sets her is open and closed
then: If F,E€% ;F(NE=¢,thenF,Ect; (FcFAECE).

Remark : If (X, 1) is topological space and t = # (i.e., every closed set is open) or
Uet < Ue ¥, then (X, 1)is N - space.

The spaces (X, I) and (X, D) is special case from this spaces.

We can use this remark to have infinite numbers of N — space simply by take any set
X and make topology t on X as follows : t ={X, ¢, A, A} ; Ac X.

Example : Let X = {1, 2, 3} and t = {X, ¢, {1}}. Show that (X, t) is N — space.
Solution : First, find the family of closed sets :
F={X ¢,{2,3}}

Second, take every two closed sets there intersection is empty as follows :
Take, ), XeF ;¢ X=0 = IU=0AV=Xet;UNV=9¢,(bcUAXV)
Take, ¢, {2,3}F;6N{2,3}=¢ = IU=pAV=Xet;UNV=9¢,

(bcUn{2,3}cV)
- (X, 1) is N — space.
Notes that this space not T, — space, not T, — space, not T, — space, not R — space, and
not Tz — space.

Remark : The continuous image of N — space is not necessarily N — space. i.e., if f:

(X, 1) > (Y, 1) is continuous onto function and X is N — space, then Y not
necessarily N — space and the following example show this :
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Example : Letf: (N,D) > (N, 1) ; f(X) =X VxeN.
f is continuous function since the domain (N, D) is discrete topology (see page 37)
and clear f is onto and (N, D) is N — space, but (N, tes) IS not N — space.

Remark : The property of being a N — space is not a hereditary property and the
following example show that :

Example : Let X ={1, 2, 3, 4,5} and t = {X, ¢, {1, 4, 5}, {1, 3, 5}, {1, 5}, {1, 3, 4,
5}}. Clear that (X, 1) is N — space, since : the family of closed sets :
F={X,¢.{2,3},{2, 4}, {2, 3,4}, {2}}
Notes that any two closed sets except ¢ contains 2, so there is no nonempty disjoint
closed sets and the sets are disjoint are ¢ and any other closed. Also, there is disjoint
open sets to solve this case which are ¢ and X.
Now, take the subspace W < X ; W = {3, 4, 5} such that :
w={WNU;Ue}={W, ¢ {4 5}, {5} {3,5}}
and, Fw ={W, ¢, {3}, {4}, {3, 4}}
notes that : {3} and {4} closed sets in W and {3} () {4} = ¢. But, there is no disjoint

open sets in 1y such that one of them contains {3} and the other contain {4}, so that
W is not N — space, while X is N — space.

Theorem : The property of being a N — space is a topological property.

Proof : Let (X, 1) = (Y, t') and suppose that X is N — space, to prove Y is N — space
)Y, ) =31 (X 1) > (Y, 1); f1l-1, fonto, f continuous, f open

Let FFEEF';FNE=¢

-+ fcontinuous = f(F), fYE) e Fand f ' (F) N FHE)=f(FNE)=f(¢) = ¢

(by theorem : the function f is continuous < the inverse image of every closed set in
codomaun is closed in domain)

+ XisN—space =>3U,Vet;UNV=0¢,F F)cUATYE) V)
. T open = f(U), f(V) et
.+ T isonto = f(f '(F)) c f(U) A f(fF(E)) < f(V)
= Fcf(U) A Ecf(V) (sincef(f'(F)=F A f(f(E))=E)
"UNV=¢e = fU)NTV)=FUNV)=1(¢9)=9¢
. Y is N —space.
By similar way we prove, if Y is N — space, then X is N — space.
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Theorem : The space (X, t) is normal (N — space) iff for each closed subset F < X
and open set W containing F (i.e., F < W), there exists an open set U such that F c U
cUcW.

Proof : (=) Suppose that X is N —spaceand Fc X ; F € 7.

Let Wet;FcW =FNX-W=p AX-WeF (since Wen)

w XisSN-space=3U,Vet;UNV=0¢0,FEcUAX-WcV)

=>X-VcW (since AcB = B°c A
- UNV=¢ = UcX-V
= Uc X-V (sinceAcB = AcB)
= UcX-V (since X -V closed = X -V =X —V)

= UcUcX-V (sinceAcA)
= FcUAUcUcX-V A X-VcW
=>FcUcUcW

(<) Suppose the condition of theorem satisfy, to prove X is N — space

LetF,E€F,;FNE=¢ =FcX-Een (since E € ¥F).
=3JUet;FcUcUcX-E (by hypothesis)
= UcX-E
= EcX-U (sinceAcB < B°c A

But, X — U open since U closed, say X - U =V

= EcV=X-UA FcU

AUNV =96, (sinceUcUandUNX-U=¢=>UNV=9)
. X'is N — space.

Remark : Let (X, t) and (Y, t') be two topological spaces. If the product space XxY
Isa N — space, then each X and Y are N — space.

But, the conversely is not true in general i.e.,. If each X and Y are N — space, then not
necessary that the product space XxY is a N — space.

Remark : Every metric space is N — space. Therefore, since (R, t,) is metric space,
then its N — space.

Theorem : A closed subspace of N — space is N — space.
Proof :

Let (X, t) N —space and (W, tw) closed subspace of X, to prove (W, tw) N — space
Let Fw, Eware closed sets inW; Fw (N Ew=1¢
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" Fw, Eware closed setsin Xand Fw =Fw (W A Ew=Ew W,
then Fw N Ew=¢ in X
- Xis N-space =3U,Vet;UNV=0¢0,FCUAECV)
= UNWAVNOWEenry, (by def. of ty)
unwnvnw=UNVvVNW=¢NW=¢,

sinceFw=FW=FycF A FhcW = FycUAFWcW=FycUNW
sinceEw=E(\W=EwcE A EwcW = EWcVAENSW=EycVNW
- (W, tw) iIs N —space.

Definition : T, — Space
Let (X, t) be a topological space. Then the space (X, t) is called a T, — Space iff its
normal and T, — space. i.e.,

T4—space = T, —space + N — space

Example : Let X = {1, 2, 3} and © = {X, ¢, {1}, {2, 3}}. Then the space (X, t) is not
T,—space, since its N — space but not T, — space.

Remark : If X is finite space, then (X, 1) is T, — space iff T = D, (because if X is
finite space, then its T, — space iff t =D and if t = D, then X is N— space).

Example : The space (X, D) is T,— space, since its T,;— space and N — space.

Example : The space (X, I) ; X contains more than one element is not T, — space,
since its not T, — space.

Example : The space (N, t.r) IS not T,— space, since its T, — space but not N — space.

Remark : The property of being a T, — space is not a hereditary property, since the
normality is not a hereditary property.

Theorem : The property of being a T, — space is a topological property.
Proof : Since the property T, — space and N — space are a topological property.
Then T, — space is a topological property.

Theorem : A closed subspace of T,— space is T,— space.
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Proof : Let (X, t) T,—space and W closed set in X, to prove W is T, — space
. Xis Ty —space = W is T, — space (since Ty is hereditary property)
= Wisclosed in X and X is N —space = W is N — space

(by theorem : A closed subspace of N — space is N — space)
- Wis T4— space.

Remark : Let (X, t) and (Y, t') be a topological spaces. If the product space XxY is
T,— space, then each X and Y is T,— space.

But, the conversely is not true in general i.e.,. If each X and Y is T,— space, then not
necessary that the product space XxY is T,— space.

Remark : Every metric space is T, — space. Since every metric space is T, — space
and N — space.

Theorem : Every T,— space is R — space.

Proof : Let (X, t) be T, — space = X is T, — space and N — space

Letx e Xand F closedsetin X; x ¢ F
=>{x}eF (since X'is T, —space < {x} closed V x € X}
= {X}YF=¢ (sincex ¢ F)

w XisN-space =>3U,Vet; UNV=¢,{x}cUn FCV)
= XeUnan FcV

- Xis R —space.

Corollary : Every T,— space is T;— space.

Proof : Every T, — space is R — space (by the above theorem)
Every T, —space is T, — space and N — space (by def of T, — space)
We have, X is T, — space R — space

. X'is T3 — space.

Remark : Every T, — space is T, — space since every T, — space is T; — space and
every Tz — space is T,— space so that :
T,—space = T;—space = T,—space = T,—space = T,— space
4 # ¢ +
Notes that : N— space qé R — space and N — space gé T,— space,
but N-—space + T;— space = T;— space
and N —space + T, — space = R— space
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Remark : the following figure show that the relation between separation axioms Ty,
T,,T,, T3, T4, and metric space and usual topology (R, 1) :

In previous illustrate we notes that a T, — space not necessarily R — space. Also,
If X is T, — space, then its not necessarily N — space, but this statements are satisfy if
we add the condition that compaceness space and the following theorems show this :

Theorem : Every compact T,— space is R— space.
Proof : Let (X, t) be T, — space and compact, to prove X is R — space.
LetxeX,Fe¥F ;xeF=>x#2yVyekF
o Xis Tp—space = I U, Vyet; Uy Vy=¢, XU,y eV,).
We have two family of open sets are {U,}ycr and {V,},r such that every element in
F exists in one element of the family {V,},<r and every element in the family {U,}y¢
contains the element x and every U, corresponding V, such that U, N V, = ¢.
Therefore, the family {V,},<r open cover for F

= {Vy},er Open cover of F, i.e., F < Uyer Vy
" F closed in the compact space (by hypothesis), so that F compact space and we
have : =3yn Yo ...,y s FcUL Vg,
Therefore, {Vy, }iL, is a finite family of open sets cover F (let V = UiL; V. ),
On the other hand, {Uy }iL, is a finite family of open sets and every element in this
family contains x (let U = N, Uy, )
= U and V are open sets  (by second and third condition of def of top.)
Suchthatxe Uand FcV
Notes that, UV =¢ (sinceU= NiL; U, =UcUy; Viand Uy V= ¢)
. X'is R —space.
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Remark : There is a theorem similar the above theorem and their prove is similar too
and we introduce this theorem but without prove.

((In T, — space we can separated any point x and compact subset not contains x by
disjoint open sets))

Corollary : Every compact T,— space is Tz — space.
Proof : Every T, — space is T, — space

Every T, — space and compact is R — space (by the above theorem)
We have, X is T, — space and R — space
. X'is T3 — space.

Theorem : Every compact T,— space is N — space.
Proof : Let (X, t) be T, — space and compact, to prove X is N — space.
Let FE€e#;F(E=¢ = F, Eare compact.
(by theorem : Every closed set in compact space is compact)
Choose,xeF=>x¢E= AU, Veet; U, VE=0¢, (XU A EcVp).
(by previous remark, since X is T,— space and E compact set and x ¢ E)

Now, repeated this method on every element in F, we have a family of open sets
cover F as follows :

{Uy; xeFAUyet} = F < Uker Uy

© Fiscompact set = 3 Xy, Xp, ..., Xn 3 F CUjL; Uy,
Also, we have a family of open sets every elements in this family contain E as
follows :

{Vi;i=1,2,...n A EcCcV; ViAa Vjert}

ViNUi=¢ Vi ; i=1,2 ...n

Say,U=Uj., Uy, =FcUer (by third condition of def. of top.)
Say, V=NL,V; =>EcVer (by second condition of def of top.)
Notes that, UV =¢ (since [U=UL,Ugx]l NIV=NL V] =9¢)

- Xis N — space.
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Chapter Five : Connected Spaces

Definition : Disconnected & Connected Spaces
The space (X, 7) is disconnected iff there exist two open disjoint nonempty sets A
and Bsuchthat A|JB =X. i.e.,

Xisdisconnected <& X=AUB ; A Bet, ANB=¢ ,A=¢d=B.
The sets A and B form a separation of X.
The space (X, 1) is connected iff it is not disconnected.

Xisconnected < XzAUB ; A Bet, A(B=¢ ,A=¢d=B.

Remark : The connected spaces is the spaces required in topology, but the definition
dependent on disconnected spaces for simply.

Example : Let X = {1, 2, 3} and © = {X, ¢, {1}}. Is X is connected or disconnected
space ??.

Solution : X is connected, since the only one case to represented on X as a union of
nonempty open sets is X = X | J {1}, but this sets is joint.

Example : Let X = {1, 2, 3} and © = {X, ¢, {1}, {2, 3}}. Is X is connected or
disconnected space ??.
Solution : X is disconnected, since :

X = {1} U {2 3}and {1}, {2, 3} € tand {1} N {2, 3} = d and {1} # &, {2, 3} = o.

Remark : There are 29 difference topology on set contains 3 elements, we can testes
this topologies connected or disconnected.

Remarks :

[1] (X, D) is disconnected if X contains more than one element, since :
JA; ¢2AEX = X=AUA", AA°eD, ANA=¢,Azpand A°~ ¢
since A= X.

[2] (X, 1) is connected spaces always since the only open sets are X and ¢ and this
sets not make the space is disconnected.

[3] Ift=%and 1=, then (X, 1) is disconnected since :

JAet; p=ASX = X=AUA"
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Example : (X, tef) IS connected space, if X is infinite set since there are not exist
nonempty disjoint open sets.

Example : (R, t,) is connected space, since R not equal union of two nonempty
disjoint open sets,
but R\ {Xo} ; Xo € R is separated since R \ {Xo} = (— o0, Xo) IJ (Xo, ).

Example : The metric space is either connected or is disconnected, for example :
(R, t,) generated from metric space (R, | |) is connected space.

But, (X, D) ; X contains more than one element is disconnected space which is
generated from metric space.

Example : Let X = {a, b, ¢, d}. Define a topology t on X and another topology t' on
X such that (X, t) is connected and (X, t') is disconnected.

Solution : Let T = {X, ¢, {a, b}} and ' = {X, ¢, {a, b}, {c, d}}, then (X, 1) is
connected and (X, t') is disconnected.

We introduce some theorems to equivalent properties for a space being connected :

Theorem : (X, 1) is connected space iff X cannot be written as a union of two
nonempty disjoint closed sets.
Proof : (=) Suppose that X is connected
Toprove XAlUB ;A Be¥F ,ANB=¢ ,A=x¢=B
Supposethat X=A|JB ;A,Be¥ ,AB=¢ ,A#¢=B
= A=B° A B=A°
—>Aet A Bet (sinceA=B°ABe¥F and B=A°AAc¥)
=>X=AUB ;A,Bet ,ANB=¢ ,A=¢=B
— X disconnected  C!l Contradiction I!  since X is connected
=>XzAUUB ;A Be¥ ,ANB=¢ ,A=¢=B.
(<) Suppose that XA |UB ;A,Be¥F ,ANB=¢ ,A=¢=B
To prove X is connected
Suppose that X is disconnected
=>X=UlV ;UVer ,UNV=¢ ,Uz¢=2V
= U=V A V=U°
=U,Ve¥F Cll Contradiction !
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since the complement of every one of them is open set and this contradiction with
hypotheses
.. X connected space.

Theorem : (X, 1) is connected space iff the only subsets of the space X which are
open and closed are X and ¢.
Proof : (=) Suppose that X is connected
Toprove, if Ac X, A, A°e 1, then A=XorA=¢.
Suppose that A, A°et and A= Xand A= ¢
= X=AJA° A AAet A ANA=¢ ,A=p=A° (since A=X)
— X disconnected  C!! Contradiction !!
ifAcX, A A°et,then A=Xor A=¢.
(<) Suppose that, if Ac X, A, A°ert, thenA=XorA=¢,i.e, 1t F={X ¢}
To prove X is connected
Suppose that X is disconnected
=>X=UUUV ;UVert ,UNV=d A Uzxo=V
= U=V" A V=U" =UVe¥F
=U,VetF CH Contradiction !!

Since U and V are open and closed and not equal X and ¢.
.. X connected space.

Theorem : (X, 1) is connected space iff the only subsets of the space X which have
empty boundary sets are X and ¢. i.e.,
[Xisconnected < (0=AcX = A= )]
on the other hand :
[Xis connected < (A°=¢p = A=¢ v A=X)]
Proof : (=) Suppose that X is connected
Toprove, ifA°=¢ = A=¢p v A=X
Supposethat Ac X and A°=¢ A A= A A=X
= ¢0cA = A°cA = Aec¥F  (bytheorem: AeF <A c A)
On the other hand :
dNA=0 = A°NA=¢ = Act (bytheorem:Act<= A" MNA=¢)
= A A°et and A=z A A=X
= X disconnected
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(by theorem : (X, 1) is connected space iff the only subsets of the space X which are
open and closed are X or ¢)
(this contradiction with hypotheses : X is connected = A" = ¢ if ¢ = A = X)
L ifA"=¢9 = A= v A= X
(<) Suppose that, if A°=¢ = A=¢ v A=X,
To prove X is connected
Suppose that X is disconnected

=X=UUUV ;UVert , UONV=9 A Uzxo=V

= U=V* A V=U" =U\Ve¥F

SU=¢ A V'=9¢ (by theorem : A, A® € 1 < A° = ¢)
(this contradiction since U” = ¢, but U = X and U = ¢)
.. X connected space.

Theorem : (X, 7) is connected space iff every continuous function from domain X to
codomain ({1, 2}, D) is constant function.
Proof : Letf: (X, t) > ({1, 2}, D) be continuous function.
(=) Suppose that X connected space
To prove, f is constant function
Suppose that f not constant
=>3dAcX;fd=1 VaceA
and ABc X;f(b)=2 VbeB
Notes that,
(1) X=AUB,sinceif XA |JB = 3 xe X; xhasnoimage = f not funct.
(2) A=¢,sinceif A=¢ = fconstant (the prove end)
and, B = ¢, since if B = ¢ = f constant (the prove end)
(3) ANB=¢,sinceif A(B = ¢ =3 xeX; xhas two image = f not funct.
Now,
{1}, {2} € D (by def. of D) = {1}, {2} open setin ({1, 2}, D)
-+ feontinuous = A=f'{1) et A~ B=f'{2Der
=>X=AUB A A Bet A ANB=¢0 AA=p#B
= X disconnected  C!! Contradiction !!
f is constant function

(<) Suppose that f is constant function
To prove, X connected space
Suppose that X disconnected
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—X=AUB ;A Bet ,ANB=¢ ,A=¢$=B

Define f: (X, 1) = ({1, 2}, D) ; f(X) ={12 ig ;:]?

Clear that f is continuous, since D = {{1, 2}, ¢, {1}, {2}} and
fiqL,2h)={1,2yer,f () =der,f'{1)=Aect,f'{2})=Ber
= fnotconstant  C!! Contradiction !!
. X connected space.

Remark : If (X, 1) is topological space and (W, ty) is a subspace of X, then the
space W being disconnected or connected not directly relation by X and the open sets
in X, but dependent on the open sets in W. i.e., its dependent on Ty So that : W is
connected space iff there exist two open disjoint nonempty sets A and B in W such
that A JB=W.

I.e.,, Wis disconnected & W=AUB ; ABetww, A[NB=¢ ,A=¢=B.
The space (W, ty) is connected iff it is not disconnected.

Wisconnected < W=zAUUB ; A Betww, A(NB=¢ ,A=d=B.

Remark : The property of being a connected space is not a hereditary property and
the following example show that :

Example : Let X = {1, 2, 3} and t = {X, ¢, {1, 2}, {1, 3}, {1}}. Let W X ; W =
{2, 3}. Is W is connected space ??
Solution : Compute Ty :
w={WNU;Ue}={W, ¢ {2} {3}.}

Notes that T = D, then W is disconnected space but not connected since :

W ={2} U {3} and {2}, {3} e twand {2} N {3} = ¢ and {2} = ¢, {3} # ¢.
Notes that X is connected space but not disconnected, while it's have disconnected
subspace.

Theorem : continuous image of connected space is connected. i.e.,

If f:(X, 1) > (Y, 1) is continuous and onto function and X is connected, then Y is
connected.

Proof : Suppose that Y is disconnected

—3ABet ; ANB=¢ A A=p=B A Y=A|UB

= f{Y)=f (AUB)

= X=f{A)UF'B) (sincefonto= fHY)=XAfAUB)=Ff* (A UFB))
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= f'(A),f'(B)et  (since f continuous )

A FHANTB) =FANB)=fY($) =0
ANAzxdO AB=d = FHA) =¢ =F(B)

.. X is disconnected C!ll Contradiction !!
.Y is connected.

Remark : If f: (X, 1) = (Y, ') is continuous and onto function and Y is connected
space, then X not necessary connected space and the following example show that :

Example : Letf: (R,D) > (R, 1) ;f(xX) =x V xeR.
Clear that f is continuous and onto function and (R, 1) is connected, but (R, D) is not
connected (disconnected).

Corollary (1) : The property of being a connected space is a topological property.
Proof :
Let (X, t) and (Y, t') be topological space ; X =Y
o Xz2Y = 3f: (X, 1) > (Y, 1) ;f 1-1, fonto, f continuous, f* continuous
Suppose that X is connected, to prove Y is connected
- f continuous, onto and X connected = f(X) =Y connected
(by theorem : continuous image of connected space is connected)

Now, suppose that Y is connected, to prove X is connected
-+ £ continuous, onto and Y connected = f(Y) =X connected

(by same theorem : continuous image of connected space is connected)

Corollary (2) : Let (X, 1) and (Y, t') be two topological spaces. If the product space
XxY is a connected space then each X and Y are connected spaces.
Proof :
The projection function Py : XxY — X is continuous and onto
.+ XxY connected and Px continuous = Px(XxY) connected
(by theorem : continuous image of connected space is connected)
* Px onto = Px(XxY)=X
— X connected
By the similar way we prove Y connected.
The projection function Py : XxY — Y is continuous and onto
- XxY connected and Py continuous = Py(XxY) connected
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(by theorem : continuous image of connected space is connected)
. Px onto = Py(XxY)=Y
= Y connected

We can use previous theorem and their corollaries to known some spaces either
connected or disconnected as the following examples :

Example : If we know the function f : (R, t,) — (Y, 1) is continuous onto. Is Y
connected space ??

Solution : Yes, since (R, t,) is connected space and f is continuous onto function,
then f(R) =Y is connected space.

Example : If we know that (R, D) = (Y, ). Is Y connected space ??

Solution : No, since the equivalent topological spaces either connected spaces or not
connected spaces, because the property of being a connected space is a topological
property and since (R, D) is disconnected space, then f(R) =Y is disconnected space.

Example : If we know the product space XxY for spaces X and Y is indiscreet
topology i.e., Tx.v = I. What we say about X and Y ??
Solution : Yes, since (XxY, 1) is connected space, then X and Y is connected space.

Remark : If A and B are connected subsets of a space (X, t), then A ) B is not
necessary connected and the following example show that :

Example : Let X = R? and its product space (R, t,) x (R, t,) such that the open
neighhoods in this space is a disc her center is a point (for example {(x, y) € R?
X*+y? < 1} is an open neighhood for the point (0, 0) and geometrical it’s a disc with
center (0, 0) and radius 1.

Let A and B define as follows :

AR
A={(xy)eR? : X*+y*=1 Ay <0} f B
B={(X,y)€|R§2;X2+y2=1/\y20} < = (1, 0) > R
, \/\A
v

such that the geometric representation of A as lower half for circle circumference
with radius 1 and center (0, 0) as the above figure.
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and the geometric representation of B as upper half for circle circumference with
radius 1 and center (0, 0) as the above figure.

ANB={(10),(-10)}

Notes that every one of A and B are connected, but A [ B not connected set.

Remark : If A and B are connected subsets of a space (X, t), then A |J B is not
necessary connected and the following example show that :

Example : Let (X, 1) =(R,t)and A=(1,2)and B= (3, 4)
Clear that A and B are connected sets since we cannot represented as a union of
nonempty disjoint open intervals subsets of A or B, but A [J B is not connected
(disconnected) since
AUB=(, 2 U (@B, 4) and clear that every one of (1, 2) and (3, 4) nonempty
disjoint open sets in A | J B.
Notes that in general in a space (R, t,) : If A is subset of R, then A is connected iff A
Is interval i.e.,

A'is connected << A=(a,b)or A=[a,bJorA=(a b]Jor A=]a,b)

Theorem : Let (X, 1) be a topological space. If W is a connected subsets of X and X
=AUBsuchthat A,Betand A(1B=¢and A= ¢ =B, then W< Aor Wc B.
Proof :

Suppose that W A and WZ B

=WNA=p and WNB=¢

“ABetr =>WNOA W(Betyw (by def. of subspace topology)
Notes that,

WNA=O (since, iT WM A=¢ = WcB)

WAB=¢ (since, ifWNB=¢ = WcA)

Also,

WNANWNOB =WNANB)=WNd=¢
andW=MWNAUMWNB)

= W is disconnected C!l Contradiction !!

L WcA v WcB.

Remark : Notes that A |J B may be not connected in spite of A connected and B
connected, but if we add a condition A (] B = ¢, then A |J B is connected set and this
show in the next theorem :
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Theorem : If A and B are connected subsets of a space (X, t) and A[) B = ¢, then A

U B is connected.

Proof :

Let (X, t) topological space and A, B < X ; A, B connectedand A(1B = ¢

To prove A |J B connected ??

Suppose that A |J B disconnected
=AUB=UUYV ; UVerue,. UNV=9UzxpzV
=AcAUB =AcUJV andA connected

=AcU v AcV (by previous theorem)
By similarway = BcAUB =B cU|JV andB connected
=>BcU vBcV (by previous theorem)

Now,
—eitherAcU ABcU =AUBcU = V=¢ CH
or AcV ABcV=AUBcV =U=¢ CHI
or AcUABcV =ANBcUNV=¢=ANB=¢ CH
or AcVABcU=ANBcUNV=¢=ANB=¢ ClU
. AU B connected.

Remark : We can generalization the above theorem to family of connected sets as
follows :

Let {A,}.cx be a family of connected subsets of a space (X, 1) and (oesAs # ¢, then
UacaA is connected set.

We prove previously, if the product space XxY is connected space, then each
X and Y is connected space and we question the converse is true (i.e., Let (X, t) and
(Y, t') be a topological spaces. If each X and Y is connected space, then the product
space XxY is connected space) and the answer is true and we postpone the prove for
this problem until the availability of basic prove from previous theorem as follows :

Theorem : Let (X, 1) and (Y, t') be two topological spaces. If each X and Y are
connected space, then the product space XxY is a connected space.
Proof :

Let (X, t) and (Y, t') connected spaces, to prove (XxY,tx.y) connected
Xz Xx{y};yeYand X connected = Xx{y} connected

(connected is topological property)
Y 2 {Xx}xY ;xeXandY connected = {x}xY connected
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(connected is topological property)
Fixed yoe Y = Xx{yo} connected (thisistrue VyeY)

Clear, Xx{yo} N {x}xY = ¢ (since (X, Yo) € Xx{yo} N {X}xY)
= Xx{Yo} U {x}xY connected V x € X
(by previous theorem: If A and B are connected and A[)B=¢, then AUB is
connected)
The family {Xx{yo} U {X}xY }xex Of connected sets in XxY

Clear that XxY = [Uxex (Xx{yo} U {X}xY) and Mxex (Xx{yo} N {X}*xY) = d
. XxY connected
(by previous theorem since it’s a union of family of intersection connected sets)

Remark : Take the following example to show the Cartesian product which are
Xx{y} and {x}xY and the union and intersection in the previous theorem :

Example : Let X ={1,2,3}and Y = {a, b, c}, then

XxY ={(1, a), (1, b), (1, ¢), (2, a), (2, b), (2, ¢), (3, a), (3, b), (3,¢c)} and,
Xx{a} ={(1, a), (2, a), (3, a)}

Xx{b} = {(1, b), (2, b), (3, b)}

Xx{c}={(1, c), (2, ), (3, )} also,

{13xY ={(1,a), (1, b), (1, c)}

{23xY ={(2, a), (2, b), (2, )}

{83xY ={(3, ), 3, b), (3, c)}

Clear that the intersection any two sets her is nonempty and

XxY = Uyex Xx{a} U {x3xY).

Definition : Component of x

Let (X, ) be a topology space and x € X. We say the set which is a union of every

connected sets that contains x is a component of x and denoted by C(x). i.e.,
CX)=U{A < X:xe A A Aisconnected}

This means that C(x) is the large connected set contains Xx.

Example : Let X = {1, 2, 3} and t = {X, ¢, {3}, {1, 2}}. Compute the component for
every element in the space (X, 1).

Solution :

C(1) ={1, 2}, since {1, 2} is a large connected set contains 1.
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Notes that {1, 3} contains 1 too, but it's not connected since the induce topology on
{1, 3} is w5 = {{1, 3}, ¢, {3}, {1}}, then {1, 3} = {1} U {8} this means it's not
connected.

On the other hand {1} is connected set (since every singleton set in any topology is
connected set) and its contains 1 but not largest set.

By similar way : C(2) = {1, 2} while C(3) = {3} since any set contains 3 except {3}
IS not connected.

Example : Let X = {a, b, c} and t = {X, ¢, {a}}. Compute the component for every
element in the space (X, 7).

Solution :

C(a) = C(b) = C(c) = X, since X is connected space and its large connected set
contains any element in this space.

Remark : (X, 1) is connected space iff C(x) = X for all x € X.

If X is connected, then X is large connected set for every element in X and C(x) = X.
On the other hand, if C(x) = X for every element x € X, then X is connected set since
C(x) is connected set (by definition).

Remarks :

[1] The space (R, 1) is connected space, then C(x) =R for all x € R.

[2] In the space (X, D), if X contains more than one element, then C(x) = {x} for all
X € X, since the only unique sets her is singleton sets.

[3] The space (X, I) is connected space, then C(x) = X for all x € X.

[4] The space (X, teop); X infinite set is connected space, then C(x)= X for all x € X.

Theorem : The component C(x) for every element x is closed set.
Proof :

C(x) cC(x) (since A c A)

-+ C(x) is connected set = C(x) is connected set

(by theorem : If A— B — A and A connected, then B connected and so A connected)
-+ C(X) the large connected set that contains x and C(x) connected ; C(x) = C(x),

So C(x) = C(x) = C(x) is closed set (by theorem : A closed <> A = A)

Remark : C(x) = ¢ for all x € X, since x € C(x).

Theorem : If C(x) () C(y) # ¢, then C(x) = C(y).
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Proof :

.+ C(X) N C(y) # ¢ and C(x), C(y) the connected sets = C(x) |J C(y) is connected set
(by theorem : Union of connected sets is connected if their intersection nonempty)
We get : C(x) | C(y) connected set ; C(x) < C(x) lJ C(y) and C(y) < C(x) U C(y)
Since C(x) and C(y) are the largest connected sets ; x € C(x) and y € C(y)

= C(x) U C(y) = C(x) = C(y).

Remark : Family of components elements in the space (X, t) being a partition for X.
(1) CxX)=¢ VxeX
(2) 1f C(x) = C(y), then C(X) () C(y) = ¢ (by previous theorem)
(3) X =Ukex C(X) i.e., Uxex C(X) = X and X < Uxex C(X)

since C(X)c X VX = Uxex C(X) = X

since VxeX = xeC(x)

= X € Uxex C(X)
S0, X < Ukex C(X)

Example : Let X ={1, 2, 3} and T = {X, ¢, {1}, {2, 3}}.

Her C(1) = {1} and C(2) = C(3) = {2, 3}

Notes that C(1) = ¢, C(2) = ¢ and C(3) # ¢

Also,C(1)#C(2)=C(1)NC@)=¢

and C(1)=C(3)=C(1)NCRB)=¢

on the other hand, the union of components equal X i.e., X = C(1) I C(2) lJ C(3) and
this clear since C(1) = {1} and C(2) = C(3) = {2, 3}, then X = {1} U {2, 3}.

Definition : Locally Connected
The space (X, 1) is locally connected at a point x € X iff there exists an open
connected of a point x. If (X, 1) is locally connected at each point x € X, then X is
called a locally connected space. i.e.,

X is locally connected < Vxe X3 Ue1;xeUandU is connected.

Remark : There is no relation between the concepts connected and locally connected
I.e., connected and locally connected are independent concepts and we show that by
the following example :

Example : (A space that is locally connected but not connected)
Let X=(-3,00J(3,8)
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X is a subspace of (R, t,) : Clear that X is not connected since it’s a union of
nonempty disjoint open intervals. On the other hand X is locally connected space
since every element in X either in (- 3, 0) and its connected intervals and it’s a
connected open neighhood for every element in (— 3, 0) and by similar way if the
element contain in (3, 8).

I.e., Locally Connected 4 Connected.

Example : Comb Space (A space that is connected but not locally connected)
X=AUB ; A={(x,y)eR* : 0<y<1,x=0 or x==,neN}
B={(x,0)eR® : 0<x<1}

The following figure show the comb space :

/\[R

0, 1)

N
Cd

N

v (1/3,0) (1/2, 0) (1,0)

Comb Space : This space is a subspace of (R?, 1)
Notes that this space consist of infinite sets of line segment length every one 1 and
when converge to y-axis , then this line segment is adherent to each other i.e., the
distant between them is reduced when they converge from Y.
Notes that the shape this space similarity the comb such that the line segment on x-
axis represented the base of the comb while the vertical line represented teeth comb.
We know this space is connected space since its consist of one piece, but it's not
locally connected and in true its not locally connected only on every point on y-axis
since every neighhood for any point (0, y) on y-axis consist of sets of disjoint line
segment to each other, so that the open neighhood is not connected i.e., we cannot
find connected open neighhood for any point from type (0,y) ;y#0and0<y <1
and this show by the following figure which is intersection open ball in R? with the
space X.

R
A

N
(0, y) ddaail) BIEES
(2 y)f

/f
< s R

~ 7

(0,1)"Comb Space : This space is a subspace of (R?, 1,)
Connected # Locally Connected
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Remark : The property of being a locally connected space is not a hereditary
property and the following example show that :

Example : In the above example, (R?, 1,) is locally connected space while the comb
space W is a sub space of (R?, t,) which is not locally connected space.

Example : the space (X, D) is locally connected space since every element x in X,
then {x} is a connected open neighhood.

Remark : continuous image of locally connected space is not necessary locally
connected and the following example show that :

Example : Take comb space W in previous example and take difference topologies
one of them discrete topology D and the other is the induce topology Ty from (R? t,)
and define the function f as follows :

f:(W,D)—> (W, 1) ; f{(X)=x V xeW
clear that f is continuous since its domain D and its onto since its identity function.
Also, we know (W, D) is locally connected space while (W, ty) is not locally
connected space (we clear that in illustrate previous).

Example : the space (X, 1) is locally connected space since the only unique for every
element x in X is itself X and X her is a connected set.

Example : (R? 1) is locally connected space since there is always open internals
corresponding every real number contains it and since every open interval is
connected and it’s aa open neighthood for a point, then (R?, ) is locally connected
space.

Example : (X, 1) is locally connected space since every open set in this space is
connected set, therefore there is an open neighthood for every element contains it.

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {2, 3}} such that t is a topology on
X. Is (X, 1) connected space ?? locally connected space ??

Solution :

(X, 1) is not connected (disconnected) space since X = {1} U {2, 3} such that {1},
{2, 3} are nonempty disjoint open sets.
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(X, 1) is locally connected space since every element have connected open
neighthood ; 1 € {1} € tand {1} is connected set, also 2, 3 € {2, 3} € tand {2, 3}
IS connected set.

Theorem : If f f: (X, t) — (Y, 1) is onto, continuous and open function and X is
locally connected, then Y is locally connected.
Proof :
LetyeY = 3IxeX ; f(x)=y (since fis onto)

- Xis locally connected = 3 connected open nbd for x
e, 3Uet ; xeU A Uisconnected
-+ Fis continuous = f(U) is connected

(by theorem : continuous image of connected space is connected)

.~ fisopen = f(U) isopen i.e., f(U) et alsoy e f(U)
We get, f(U) is connected open nbd fory = Y is locally connected.

Corollary : The property of being a locally connected space is a topological
property.

Proof :

Let (X, t) and (Y, t') be topological spaces ; X=Y

o Xz2Y = 3f: (X, 1) > (Y, 1) ;f 1-1, fonto, f continuous, f* continuous
Suppose that X is locally connected, to prove Y is locally connected

- f onto, continuous, open and X locally connected = f(X) =Y locally connected

(by previous theorem)
Now, suppose that Y is locally connected, to prove X is locally connected

-+ £ onto, continuous, open and Y locally connected = f*(Y) = X locally connected
(by previous theorem)

Remark : Let (X, t) and (Y, t') be a topological spaces. If the product space XxY is
locally connected space then each X and Y is locally connected space.
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