Chapter Two: Continuity and Derived Topological Spaces

Definition: Continuous & discontinuous Functions

Let (X, τ) and (Y, τ') be two topological spaces and $f: (X, \tau) \to (Y, \tau')$. The function f is called <u>continuous</u> if the inverse image for any open set in Y is an open set in X. i.e.,

$$f: (X, \tau) \to (Y, \tau')$$
 is continuous $\Leftrightarrow f^{-1}(V) \in \tau \ \forall \ V \in \tau'$

and the function f is called <u>discontinuous</u> if there exist an open set in Y, but inverse image is not open in X. i.e.,

$$f \ \ is \ discontinuous \ \Leftrightarrow \ \exists \ V \in \tau' \ \land \ f^{\text{--}1}(V) \not\in \tau$$

Example: Let
$$X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b\} \text{ and } \tau' = \{Y, \phi, \{b\}\}$$

(1) Define $f: (X, \tau) \to (Y, \tau')$; f(1) = b, f(2) = f(3) = a. Is f continuous??

The open sets in Y are Y, ϕ , {b}. Now take the inverse image of this sets.

$$Y \in \tau' \implies f^{-1}(Y) = X \in \tau$$
 the set of all element in X its image in Y

$$\phi \in \tau' \implies f^{-1}(\phi) = \phi \in \tau$$
 the set of all element in ϕ its image in ϕ

$$\{b\} \in \tau' \implies f^{-1}(\{b\}) = \{x \in X \; ; \; f(x) = b\} = \{1\} \in \tau$$

the set of all element in X its image in $\{b\}$

Therefore, the inverse image of every element in τ' is element in τ , hence f is continuous.

(2) Define $g:(X, \tau) \to (Y, \tau')$; g(1) = a, g(2) = g(3) = b. Is g continuous??

$$Y \in \tau' \implies g^{\text{-}1}(Y) = X \in \tau$$

$$\varphi \in \tau' \ \Rightarrow \ g^{\text{-1}}(\varphi) = \varphi \in \tau$$

$$\{b\} \in \tau' \implies g^{-1}(\{b\}) = \{2, 3\} \not\in \tau$$

Therefore, f is discontinuous.

(3) Define $h: (X, \tau) \to (Y, \tau')$; h(1) = h(2) = h(3) = a. Is h continuous??

$$Y \in \tau' \implies h^{-1}(Y) = X \in \tau$$

$$\varphi\in\tau'\ \Rightarrow\ h^{\text{-1}}(\varphi)=\varphi\in\tau$$

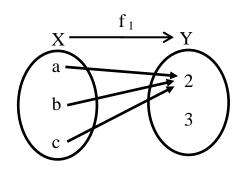
 $\{b\} \in \tau' \implies h^{-1}(\{b\}) = \phi \in \tau$ since there is no element its image is b

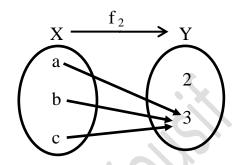
Therefore, f is continuous.

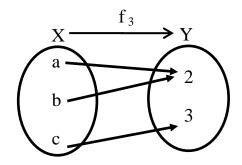
Remark : Always the inverse image of Y is X and the inverse image of ϕ is ϕ .

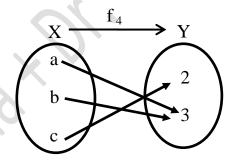
Example : Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{b, c\}\}$, $Y = \{2, 3\}$ and $\tau' = \{Y, \phi, \{2\}\}$. Find all continuous function define from (X, τ) to (Y, τ') .

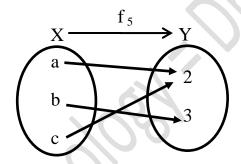
Solution: There are $2^3 = 8$ from difference functions from X to Y which are some of them continuous and some others of them discontinuous. Now we introduce the figure for all functions from X to Y and discuses there continuous.

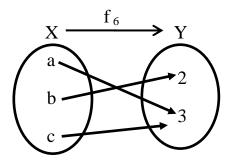


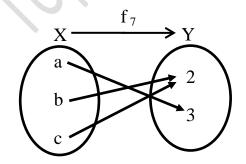


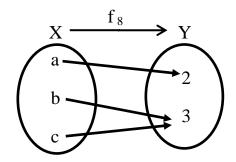












From remark above $f_i^{-1}(Y) = X$ and $f_i^{-1}(\phi) = \phi$, i = 1, 2, 3, 4, 5, 6, 7, 8.

 $f_1 \text{ is continuous, since } f_1^{-1} \left(\{2\} \right) = \{a,b,c\} = X \in \tau.$

 f_2 is continuous, since $f_2^{-1}(\{2\}) = \phi \in \tau$.

 f_3 is discontinuous, since $f_3^{-1}(\{2\}) = \{a, b\} \notin \tau$.

 f_4 is discontinuous, since $f_4^{-1}(\{2\}) = \{c\} \notin \tau$.

 f_5 is discontinuous, since $f_5^{-1}(\{2\}) = \{a, c\} \notin \tau$.

 f_6 is discontinuous, since $f_6^{-1}(\{2\}) = \{b\} \notin \tau$.

 f_7 is continuous, since $f_7^{-1}\left(\{2\}\right) = \{b, c\} \in \tau$.

 f_8 is discontinuous, since $f_8^{-1}(\{2\}) = \{a\} \notin \tau$.

Therefore, the continuous functions in this example are f_1 , f_2 , f_7 only.

Remark : There are special cases of continuous functions.

[1] Every constant function from a space (X, τ) to a space (Y, τ') is continuous. i.e.,

$$f:(X,\tau)\to (Y,\tau')$$
; $f(x)=c \quad \forall \ x\in X \ \text{and} \ c=\text{constant in } Y.$

To show that f is continuous.

Let $V \in \tau' \implies V$ is open in Y, then

$$f^{-1}(V) = \begin{cases} X & \text{if } c \in V \\ \emptyset & \text{if } c \notin V \end{cases}$$

 \Rightarrow X, $\phi \in \tau \Rightarrow$ f is continuous.

[2] If $\tau' = I$, then the function $f : (X, \tau) \to (Y, I)$ is continuous for any set Y and any topological space (X, τ) . i.e., $I = \{Y, \phi\}$ and $f^{-1}(Y) = X \in \tau$, $f^{-1}(\phi) = \phi \in \tau$.

Special case : $f:(X, I) \rightarrow (Y, I)$ is continues

And the function $f:(X, I) \to (Y, \tau')$; $\tau' \neq I$ is discontinuous in general for example :

$$f:(\mathbb{R}, I) \to (\mathbb{R}, \tau_u)$$
 ; $f(x) = x$

f is discontinuous since $(0, 1) \in \tau_u$ and $f^{-1}((0, 1)) = (0, 1) \notin I = \{\mathbb{R}, \phi\}.$

[3] If $\tau = D$, then the function $f: (X, D) \to (Y, \tau')$ is continuous for any set X and any topological space (Y, τ') and for any function f since, if $V \in \tau'$, then $f^{-1}(V) \subseteq X$ this means $f^{-1}(V) \in IP(X)$, but D = IP(X) and this implies $f^{-1}(V) \in D$. Therefore f is continuous.

Special case : $f:(X, D) \rightarrow (Y, D)$ is continuous

And the function $f:(X,\,\tau)\to (Y,\,D)$; $\tau\neq D$ is discontinuous in general for example :

$$f:(\mathbb{R},\, \tau_u) \to (\mathbb{R},\, D)$$
 ; $f(x)=x$

f is discontinuous since $\{1\} \in D$ and $f^{-1}(\{1\}) = \{1\} \notin \tau_u$.

Notes that the function $f:(X, D) \to (Y, I)$ is continuous always for any set X and any set Y since its add the remark [2] and [3] such that $\tau = D$ and $\tau' = I$.

[4] Every identity function from a spaces to the same space is continuous. i.e.,

$$f:(X, \tau) \to (X, \tau)$$
 ; $f(x) = x \quad \forall x \in X$

is continuous function since $f^{-1}(V) = V$ for any open set V in (X, τ) and this implies $f^{-1}(V)$ is open in (X, τ)

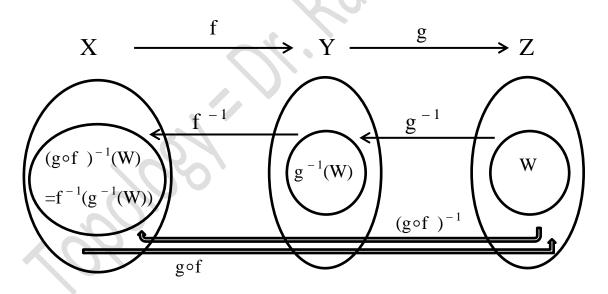
notes that the identity function from a space to another space may be continuous and its clear in example in remark [2] and [3] above.

Theorem : If $f:(X, \tau) \to (Y, \tau')$ and $g:(Y, \tau') \to (Z, \tau'')$ are both continuous functions, then the composition gof $:(X, \tau) \to (Z, \tau'')$ is continuous.

Proof:

Let
$$W \in \tau$$
" $\Rightarrow g^{-1}(W) \in \tau$ ' (since g is continuous)
notes that $g^{-1}(w) \subseteq Y$
 $\Rightarrow f^{-1}(g^{-1}(W)) \in \tau$ (since f is continuous)
 $\Rightarrow (f^{-1}og^{-1})(W) \in \tau$ (by composition of function)
 $\Rightarrow (gof)^{-1}(W) \in \tau$ (since $(gof)^{-1} = f^{-1}og^{-1}$)

:. gof is continuous. The figure below clear this theorem.



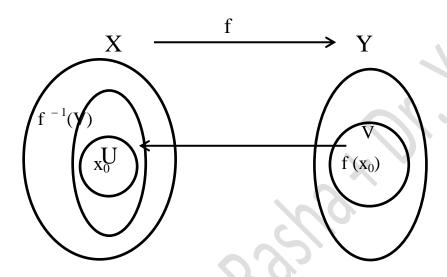
Remake : The composition of finite number of continuous functions is continuous. i.e., the composition of three or five or hundred continuous functions is continuous. For example if f, g, h, k are continuous, then kohogof is continuous etc.

Now we introduce the definition of continuous function at a point :

<u>Definition</u>: Continuous at a Point

Let (X, τ) and (Y, τ') be topological spaces and $f: (X, \tau) \to (Y, \tau')$. the function f is called **continuous at a point** $x_0 \in X$ if the inverse image for any open nbd for $f(x_0)$ in Y contains an open nbd for x_0 in X. i.e.,

f is continuous at $x_0 \in X \Leftrightarrow \forall \ V \in \tau'$; $f(x_0) \in V \ \exists \ U \in \tau$; $x_0 \in U \land U \subseteq f^{-1}(V)$ The following figure clear this definition :



Such that V is an open nbd for $f(x_0)$ in Y and $f^{-1}(V)$ is inverse image for V and U is an open nbd for x_0 in X contains in $f^{-1}(V)$.

Remark: If f is continuous function. Then its continuous at every point in the domain. Also, if f is continuous at every point in the domain, then its continuous.

<u>Notes that</u>, if f is continuous at a point in the domain, then its discontinuous in general and the following example show that:

Example : Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$, $Y = \{1, 2\}$ and $\tau' = \{Y, \phi, \{1\}\}$. Define f as follow :

$$f:(X,\,\tau)\to (Y,\,\tau')\ ;\ f(a)=f(b)=2,\,f(c)=1$$

notes that f is discontinuous since $\{1\} \in \tau'$, but $f^{-1}(\{1\}) = \{c\} \notin \tau$.

On the other hand, thought that f is discontinuous in general, but its continuous at a point a as follow:

f(a) = 2 and the open nbd of 2 is Y only and $f^{-1}(Y) = X$ and X is an open nbd

There are several characterizations of continuous functions and, hence, that any one of them may be used to show continuity of a function. These are given in the next theorem:

Theorem : Let $f:(X, \tau) \to (Y, \tau')$ be a function. Then f is continuous iff satisfy one of the following properties :

- (1) $f^{-1}(F) \in \mathcal{F} \quad \forall \quad F \in \mathcal{F}'$; \mathcal{F} family of closed sets in X and \mathcal{F}' family of closed sets in Y i.e., The inverse image of every closed set in Y is closed in X.
- (2) $f^{-1}(B') \in \tau \quad \forall \quad B' \in \beta'$; β' is a basis for τ' . i.e., The inverse image of every element in any basis for τ' is open set in X.
- (3) $f^{-1}(S') \in \tau \quad \forall \quad S' \in \&'$; &' is a subbasis for τ' . i.e., The inverse image of every element in any subbasis for τ' is open set in X.
- (4) $f^{-1}(N_y) \in \tau \quad \forall \quad y \in Y \quad \forall \quad N_y \in \eta_y$; η_y is a family of open nbd for a point y in Y.

i.e., The inverse image of every open nbd for any element Y is open set in X.

- (5) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$; $B \subseteq Y$.
- **(6)** $f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$; $B \subseteq Y$.

Proof:

- (1) To prove, f is continuous $\Leftrightarrow X f^{-1}(F) \in \tau \quad \forall \quad Y F \in \tau'$
 - (⇒) Suppose that f is cont. , to prove $X f^{-1}(F) \in \tau \quad \forall \quad Y F \in \tau'$

But,
$$f^{-1}(Y - F) = f^{-1}(Y) - f^{-1}(F)$$

= $X - f^{-1}(F)$ (since $f^{-1}(Y) = X$)

$$\therefore \quad f^{-1}(Y-F) \in \tau \quad \Rightarrow \quad X-f^{-1}(F) \in \tau$$

(\Leftarrow) Suppose that $X-f^{-1}(F)\in \tau \quad \forall \quad Y-F\in \tau'$, to prove f is continuous Let V open set in Y i.e., $V\in \tau'$

∴ Y – V closed set in Y since V open

 \Rightarrow f⁻¹(Y – V) closed set in X (by hypothesis)

$$\Rightarrow X - f^{\text{-1}}(Y \text{-} V) \in \tau$$

But,
$$X - f^{-1}(Y - V) = X - [f^{-1}(Y) - f^{-1}(V)] = X - [X - f^{-1}(V)] = f^{-1}(V)$$

 $\Rightarrow f^{-1}(V) \in \tau$

- : f is continuous.
- (2) To prove, f is continuous \Leftrightarrow $f^{-1}(B') \in \tau \ \forall B' \in \beta'$; β' is a basis for τ' .

(⇒) Suppose that f is continuous, to prove $f^{-1}(B') \in \tau \ \forall \ B' \in \beta'$ Let β' be a base of τ' and $B' \in \beta'$

$$\begin{split} & \Rightarrow B' \in \tau' & \text{(since } \beta' \subseteq \tau') \\ & \Rightarrow f^{\text{-1}}(B') \in \tau & \text{(since } f \text{ is continuous)} \\ & \Rightarrow f^{\text{-1}}(B') \in \tau \quad \forall \quad B' \in \beta' \end{split}$$

(\Leftarrow) Suppose that $f^{-1}(B') \in \tau$ ∀ $B' \in \beta'$, to prove f is continuous

Let V open set in Y i.e., $V \in \tau'$

$$\Rightarrow V = \bigcup_{i} B'_{i} \quad ; \quad B'_{i} \in \beta' \qquad (def. of basis)$$

$$\Rightarrow f^{-1}(V) = f^{-1}(\bigcup_{i} B'_{i}) = \bigcup_{i} f^{-1}(B'_{i})$$

$$\Rightarrow \bigcup_{i} f^{-1}(B'_{i}) \in \tau \quad (by third condition of def. of top.)$$

$$\Rightarrow f^{-1}(V) \in \tau \quad (since \quad f^{-1}(V) = f^{-1}(\bigcup_{i} B'_{i}) = \bigcup_{i} f^{-1}(B'_{i}))$$

- : f is continuous
- (3) To prove, f is continuous \Leftrightarrow $f^{-1}(S') \in \tau \ \forall \ S' \in \&' \ ; \&' \ is a subbasis for <math>\tau'$.
 - (⇒) Suppose that f is continuous, to prove $f^{-1}(S') \in \tau \ \forall \ S' \in \&'$

Let &' be a subbase of τ ' and $S' \in \&$ '

$$\begin{split} & \Rightarrow S' \in \tau' & \text{(since \& ' \subseteq \tau')} \\ & \Rightarrow f^{\text{-1}}(S') \in \tau & \text{(since f is continuous)} \\ & \Rightarrow f^{\text{-1}}(S') \in \tau & \forall S' \in \&' \end{split}$$

(\Leftarrow) Suppose that $f^{-1}(S') \in \tau \ \forall \ S' \in \&'$, to prove f is continuous

Let V open set in Y i.e., $V \in \tau'$

$$\Rightarrow V = \bigcup_{i} \left(\bigcap_{j=1}^{n} S_{j}^{'} \right)$$
 (def. of basis and subbasis)

$$\Rightarrow f^{-1}(V) = f^{-1}(\bigcup_{i} \left(\bigcap_{j=1}^{n} S_{j}^{'} \right)$$
 (inverse image distribution on union)

 $=\bigcup_{i} (\bigcap_{j=1}^{n} f^{-1}(S_{j}^{'})) \quad (\text{inverse image distribution on intersection})$ $\because f^{-1}(S_{j}^{'}) \in \tau \quad \Rightarrow \quad f^{-1}(S_{j}^{'}) \text{ open in } X$

$$f^{-1}(S_i) \in \tau \implies f^{-1}(S_i)$$
 open in X

$$\Rightarrow \bigcap_{j=1}^{n} f^{-1}(S_{j}^{'}) \in \tau$$

(by second condition of def. of top.)

$$\Rightarrow \bigcup_{i} (\bigcap_{j=1}^{n} f^{-1}(S_{j}^{'})) \in \tau$$

(by third condition of def. of top.)

$$\Rightarrow$$
 f⁻¹(V) $\in \tau$

(since
$$f^{-1}(V) = \bigcup_{i} (\bigcap_{j=1}^{n} f^{-1}(S'_{j}))$$
)

: f is continuous,

- (4) To prove, f is continuous $\Leftrightarrow f^{-1}(N_y) \in \tau \ \forall \ y \in Y \ \forall \ N_y \in \eta_y$
 - (⇒) Suppose that f is continuous, to prove $f^{-1}(N_v) \in \tau \ \forall \ y \in Y \ \forall \ N_v \in \eta_v$ Let $N_v \in \eta_v$

 $\because \eta_v$ is open nbd system for y, then η_v is a family of open set, therefore

$$\Rightarrow N_y \in \tau'$$

$$\Rightarrow f^{-1}(N_y) \in \tau \qquad \text{(since f is continuous)}$$

(\Leftarrow) Suppose that $f^{-1}(N_y) \in \tau \ \forall \ y \in Y \ \forall \ N_y \in \eta_y$, to prove f is continuous Let V open set in Y i.e., $V \in \tau'$

 \Rightarrow V = $\bigcup_{y \in V} N_y$ i.e., V = union of a family of open sets for every point in V by using the fifth condition of def. of o.n.s

$$(\ U \in \tau \iff \exists \ N_y \in \eta_y \ ; \ N_y \subseteq U \ \forall \ y \in U)$$

$$\therefore \ f^{\text{-1}}(V) = f^{\text{-1}}(\bigcup_{y \in V} N_y) = \bigcup_{y \in V} f^{\text{-1}}(N_y) \qquad \text{(inverse image distribution on union)}$$

$$\therefore \ f^{\text{-1}}(N_y) \in \tau \qquad \qquad \text{(by hypothesis)}$$

$$\Rightarrow \bigcup_{y \in V} f^{-1}(N_y) \in \tau$$
 (by third condition of def. of top.)

$$\Rightarrow f^{-1}(V) \in \tau$$
 (since $(f^{-1}(V) = \bigcup_{y \in V} f^{-1}(N_y))$

∴ f is continuous.

- (5) To prove, f is continuous $\Leftrightarrow \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$; $B \subseteq Y$.
 - (\Rightarrow) Suppose that f is continuous, to prove $\overline{f^{-1}(B)}\subseteq f^{-1}(\overline{B})$; $B\subseteq Y$.

Let
$$B \subseteq Y \Rightarrow B \subseteq \overline{B} \Rightarrow f^{-1}(B) \subseteq f^{-1}(\overline{B})$$

 $\therefore \overline{B}$ closed set in Y by (1) $f^{-1}(\overline{B})$ closed set in X

$$\Rightarrow \bigcap \{F \subseteq X : F^c \in \tau \ \land \ f^{\text{-}1}(B) \subseteq F\} \subseteq f^{\text{-}1}(\overline{B})$$

since $\overline{f^{-1}(B)}$ is intersection of all closed sets that contain $f^{-1}(B)$ and $f^{-1}(\overline{B})$ is one of the closed set that contain $f^{-1}(B)$, then

$$\Rightarrow \ \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \qquad (since \bigcap \{F : F^c \in \tau \ \land \ f^{-1}(B) \subseteq F\} = \overline{f^{-1}(B)})$$

 $(\Leftarrow) \ \text{Suppose that} \ \ \overline{f^{-1}(B)} \ \subseteq \ f^{\text{-1}}(\overline{B}) \ ; \ \ B \subseteq Y. \ , \text{to prove } f \text{ is continuous}.$

We will use part (1) in this theorem

Let F closed set in Y, to prove $f^{-1}(F)$ closed in X i.e., $\overline{f^{-1}(F)} = f^{-1}(F)$.

$$f^{\text{-1}}(F) \subseteq \overline{f^{\text{-1}}(F)} \qquad \qquad (\text{since } A \subseteq \overline{A} \) \qquad -----(1)$$

 \therefore F closed \Rightarrow F = \overline{F} \Rightarrow f⁻¹(F) = f⁻¹(\overline{F})

By hypnoses,
$$\overline{f^{-1}(F)} \subseteq f^{-1}(\overline{F}) = f^{-1}(F)$$

 $\Rightarrow \overline{f^{-1}(F)} \subseteq f^{-1}(F)$ -----(2)

From (1) and (2) we have $\overline{f^{-1}(F)} = f^{-1}(F)$

- \therefore f⁻¹(F) closed in X.
- :. f is continuous.
- (6) To prove, f is continuous $\Leftrightarrow f^{-1}(B^o) \subseteq (f^{-1}(B))^o$; $B \subseteq Y$. (\Rightarrow) Suppose that f is continuous, to prove $f^{-1}(B^o) \subseteq (f^{-1}(B))^o$; $B \subseteq Y$ Let $B \subseteq Y \Rightarrow B^o \subseteq B \Rightarrow f^{-1}(B^o) \subseteq f^{-1}(B)$

 $\begin{tabular}{ll} $:$ B^o$ is open in Y $\Rightarrow f^{-1}(B^o)$ is open in X (since f is continuous) \\ $f^{-1}(B^o) \subseteq \bigcup \{O \subseteq X \ ; \ O \in \tau \ , \ O \subseteq f^{-1}(B)\}$ \\ \end{tabular}$

since $(f^{-1}(B))^{\circ}$ is union of all open sets that contain in $f^{-1}(B)$ and $f^{-1}(B^{\circ})$ is one of the open set that contain in $f^{-1}(B)$, then

$$\Rightarrow f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ} \text{ (since } \bigcup \{O \subseteq X ; O \in \tau, O \subseteq f^{-1}(B)\} = (f^{-1}(B))^{\circ} \text{)}$$

 (\Leftarrow) Suppose that $f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$; $B \subseteq Y$, to prove f is continuous.

Let V open set in Y i.e., $V \in \tau'$ to prove $f^{-1}(V)$ open in X i.e., $f^{-1}(V) = (f^{-1}(V))^{\circ}$.

$$V^{\circ} \subseteq V \implies ((f^{-1}(V))^{\circ} \subseteq f^{-1}(V) \qquad -----(1)$$

$$\therefore$$
 V open \Rightarrow V = V° \Rightarrow f⁻¹(V) = f⁻¹(V°)

By hypnoses,
$$f^{-1}(V) = f^{-1}(V^{\circ}) \subseteq (f^{-1}(V))^{\circ}$$

 $\Rightarrow f^{-1}(V) \subseteq (f^{-1}(V))^{\circ}$ -----(2)

From (1) and (2) we have $f^{-1}(V) = (f^{-1}(V))^{0}$

- \therefore f⁻¹(V) open in X
- : f is continuous.

Remark: The six characterizations in the previous theorem for definition of continuity is not unique, but there are another characterizations for example:

f is continuous
$$\Leftrightarrow f(\overline{A}) \subseteq \overline{f(A)}$$
; $A \subseteq X$.

f is continuous \Leftrightarrow $(f(A))^{\circ} \subseteq f(A^{\circ})$; $A \subseteq X$.

Remarks:

[1] Notes that, if $f:(X, \tau) \to (Y, \tau')$ is continuous function, then it's not necessary that the direct image of open set in X is open set in Y. i.e.,

$$U \in \tau \iff f(U) \in \tau' \text{ (in general not true)}$$

 $V \in \tau' \implies f^{-1}(V) \in \tau \text{ (is true)}$

This two statements is difference and the following example show this:

Example : Let $f:(\mathbb{R}, \tau_u) \to (\mathbb{R}, I)$ be a function, then f is continuous (see, page

37). Now we will show that the direct image of open set is not open in general :

$$f:(\mathbb{R},\,\tau_u)\to(\mathbb{R},\,I)\ ; f(x)=x\quad\forall\ x\in\mathbb{R}$$

Let $U=(0,\,1)$ open set in $(\mathbb{R},\,\tau_u)$ and f(U)=U

 \Rightarrow f(U) = U is not open in (\mathbb{R} , I) since U = (0, 1) \notin I = { \mathbb{R} , ϕ }

So, we show that $U \in \tau \wedge f(U) \notin \tau'$.

[2] Notes that, if $f:(X, \tau) \to (Y, \tau')$ is continuous function, then it's not necessary that the direct image of closed set in X is closed set in Y. i.e.,

$$F^c \in \tau \not \Rightarrow (f(F))^c \in \tau'$$
 (in general not true)
 $F^c \in \tau' \Rightarrow (f^{-1}(F))^c \in \tau$ (is true)

This two statements is difference and the following example show this:

Example : In the previous example :

$$\begin{split} &f: (\mathbb{R}, \tau_u) \to (\mathbb{R}, I) \quad ; \quad f(x) = x \quad \forall \quad x \in \mathbb{R}, \quad f \ \, \text{is continuous} \\ &\text{Let } F = [0, \, 1] \ \, \text{closed set in } (\mathbb{R}, \tau_u) \\ &\Rightarrow f(F) = F \ \, \text{is not closed in } (\mathbb{R}, \, I) \ \, \text{since } F^c = [0, \, 1]^c \not \in I = \{\mathbb{R}, \, \phi\} \\ &\text{So, we show that } [0, \, 1]^c \in \tau_u \ \, \wedge \ \, \left(f([0, \, 1])^c = [0, \, 1]^c \not \in I. \right) \end{split}$$

Now we will introduce a new definitions for functions satisfy the condition [1] and [2] in the previous remark as follows:

<u>Definition</u>: Open & Closed Functions

Let $f:(X, \tau) \to (Y, \tau')$ be a function.

(1) The function f is called <u>open</u> if the direct image for any open set in X is open set in Y. i.e.,

$$f:(X,\tau) \to (Y,\tau')$$
 is open function $\Leftrightarrow \forall U \in \tau \Rightarrow f(U) \in \tau'$
 $f:(X,\tau) \to (Y,\tau')$ is not open function $\Leftrightarrow \exists U \in \tau \land f(U) \notin \tau'$

(2) The function f is called <u>closed</u> if the direct image for any closed set in X is closed set in Y. i.e.,

$$\begin{split} f:(X,\tau) \to (Y,\tau') \quad \text{is closed function} \; \Leftrightarrow \; \forall \; F^c \in \tau \; \; \Rightarrow \; \left(f(F)\right)^c \in \tau' \\ f:(X,\tau) \to (Y,\tau') \quad \text{is not closed function} \; \Leftrightarrow \; \exists \; F^c \in \tau \; \; \wedge \; \; \left(f(F)\right)^c \not \in \tau' \end{split}$$

Remark: There are no relation between the concepts continuous, open, closed functions and the following table show that:

f continuous function	f open function	f closed function
T	T	T
T	T	F
T	F	T
F	T	Т
T	F	F
F	T	F
F	F	T
F	F	F

Such that T = True (i.e., the function is satisfy) and F = False (i.e., the function is not satisfy). Also, there are eight probability may be taken the function for example (T = T) means that the function f is continuous, not open , closed. Therefore we will introduce an eight examples satisfy this probability:

Example (1): (T T) means the function f is continuous, open, closed.

Define the identity function $f:(X, \tau) \to (X, \tau)$; $f(x) = x \quad \forall x \in X$.

f is continuous since $\forall V \in \tau$ in rang $X \Rightarrow f^{-1}(V) = V \in \tau$ in domain X.

f is open since $\forall U \in \tau$ open in domain $X \Rightarrow f(U) = U$ is open in rang X.

f is closed since \forall F closed in domain $X \Rightarrow f(F) = F$ is closed in rang X.

Example (2): (T T F) means the function f is continuous, open, not closed.

Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b, c\} \text{ and } \tau' = \{Y, \phi, \{a\}\}$

Define the constant function $f:(X, \tau) \to (Y, \tau')$; f(1) = f(2) = f(3) = a

f is continuous since it is constant.

f is open since : $X \in \tau \Rightarrow f(X) = \{a\} \in \tau', \phi \in \tau \Rightarrow f(\phi) = \phi \in \tau' \text{ and } \{1\} \in \tau \Rightarrow f(\{1\}) = \{a\} \in \tau' \text{ (i.e., } \forall \ U \in \tau \Rightarrow f(U) \in \tau' \text{).}$

f is not closed since \exists closed set $\{2,3\} \in \mathcal{F}$ (since $\{2,3\}^c = \{1\} \in \tau$)

But, $f(\{2,3\}) = \{a\} \notin \mathcal{F}' \text{ since } \{a\}^c = \{b,c\} \notin \tau'$

Example (3): (T F T) means the function f is continuous, not open, closed.

Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b, c\} \text{ and } \tau' = \{Y, \phi, \{a, b\}\}$

Define the constant function $f:(X,\tau)\to (Y,\tau')$; f(1)=f(2)=f(3)=c

f is continuous since it is constant.

f is not open since \exists open set $\{1\} \in \tau$, but $f(\{1\}) = \{c\} \notin \tau'$.

f is closed since : The family of closed sets in X is $\mathcal{F} = \{X, \phi, \{2, 3\}\}$ and the family of closed set in Y is $\mathcal{F}' = \{Y, \phi, \{c\}\}$, then

 $f(X) = \{c\}, f(\phi) = \phi, f(\{2, 3\}) = \{c\} \text{ (i.e., } \forall F \in \mathcal{F} \implies f(F) \in \mathcal{F}'\text{)}.$

Example (4): (F T T) means the function f is not continuous, open , closed.

Define the function $f:(\mathbb{R},\,I)\to(\mathbb{R},\,\tau_u)\;\;;\;\;f(x)=x \quad \ \forall\;\,x\in\mathbb{R}$

f is not continuous since \exists (0, 1) open in (\mathbb{R} , τ_u), but $f^{-1}((0, 1)) = (0, 1)$ not open in (\mathbb{R} , I).

f is open and closed since the only open and closed sets in (\mathbb{R}, I) are \mathbb{R} , ϕ and $f(\mathbb{R}) = \mathbb{R}$ and $f(\phi) = \phi$ (i.e., the direct image of open (rep., closed) set is open (rep., closed) set)

Example (5): (T F F) means the function f is continuous, not open, not closed.

Define the function $f:(\mathbb{R}, \tau_u) \to (\mathbb{R}, I)$; $f(x) = x \quad \forall \ x \in \mathbb{R}$

f is continuous since the rang is (\mathbb{R}, I) (see, page 37).

f is not open since \exists open set (0, 1) in (\mathbb{R}, τ_u) , but f((0, 1)) = (0, 1) is not open in (\mathbb{R}, T_u) .

f is not closed since \exists closed set $\{0\}$ in (\mathbb{R}, τ_u) , but $f(\{0\}) = \{0\}$ is not closed in (\mathbb{R}, I) .

Example (6): (F T F) means the function f is not continuous, open, not closed.

Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b, c\} \text{ and } \tau' = \{Y, \phi, \{a\}, \{a, b\}\}$

Define the function $f:(X, \tau) \to (Y, \tau')$; f(1) = f(2) = a, f(3) = b

f is not continuous since \exists open set $\{a\} \in \tau'$, but $f^{-1}(\{a\}) = \{1, 2\} \notin \tau$.

 $\begin{array}{l} f \text{ is open since}: X \in \tau \implies f(X) = \{a,b\} \in \tau', \, \varphi \in \tau \implies f(\varphi) = \varphi \in \tau' \text{ and } \{1\} \in \tau \implies f(\{1\}) = \{a\} \in \tau' \text{ (i.e., } \forall \ \ U \in \tau \implies f(U) \in \tau' \text{)}. \end{array}$

f is not closed since \exists closed set $\{2,3\} \in \mathcal{F}$ (since $\{2,3\}^c = \{1\} \in \tau$), but, $f(\{2,3\}) = \{a,b\} \notin \mathcal{F}'$ since $\{a,b\}^c = \{c\} \notin \tau'$.

Example (7): (F F T) means the function f is not continuous, not open, closed.

Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b, c\} \text{ and } \tau' = \{Y, \phi, \{c\}, \{b, c\}\}$

Define the function $f: (X, \tau) \rightarrow (Y, \tau')$; f(1) = f(2) = a, f(3) = b

f is not continuous since \exists open set $\{b, c\} \in \tau'$, but $f^{-1}(\{b, c\}) = \{3\} \notin \tau$.

f is not open since \exists open set $\{1\} \in \tau$, but $f(\{1\}) = \{a\} \notin \tau'$.

f is closed since : The family of closed sets in X is $\mathcal{F} = \{X, \phi, \{2, 3\}\}$ and the family of closed set in Y is $\mathcal{F}' = \{Y, \phi, \{a, b\}, \{a\}\}$, then

 $f(X) = \{a, b\}, \ f(\phi) = \phi, \ f(\{2, 3\}) = \{a, b\} \ \text{(i.e., } \forall \ F \in \mathcal{F} \implies f(F) \in \mathcal{F}' \text{)}.$

Example (8): (F F F) means the function f is not continuous, not open, not closed.

Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b, c\} \text{ and } \tau' = \{Y, \phi, \{a\}\}$

Define the function $f: (X, \tau) \rightarrow (Y, \tau')$; f(1) = f(2) = a, f(3) = b

f is not continuous since \exists open set $\{a\} \in \tau'$, but $f^{-1}(\{a\}) = \{1, 2\} \notin \tau$.

f is not open since \exists open set $X \in \tau$, but $f(X) = \{a, b\} \notin \tau'$.

f is not closed since \exists closed set $\{2,3\} \in \mathcal{F}$ (since $\{2,3\}^c = \{1\} \in \tau$), but, $f(\{2,3\}) = \{a,b\} \notin \mathcal{F}$ 'since $\{a,b\}^c = \{c\} \notin \tau$ '.

Remark: The open function is closed and the closed function is open if the function is bijective (injective and surjective). i.e.,

f is bijective function \Rightarrow (f open \Leftrightarrow f closed) f is bijective function \Rightarrow (f not open \Leftrightarrow f not closed)

This means if we wanted to get a function is open not closed or closed not open must be define a function not bijection (not injective or not surjective) since if we define a bijective function then it's either open and closed or not open and not closed.

Remark : We talking about the function $f:(X,\tau)\to (Y,\tau')$ is continuous or discontinuous. Now we will question if the function f is bijective and continuous this implies that f^{-1} is continuous (i.e., if f^{-1} exists function and f is continuous, then that implies to f^{-1} is continuous ?? or conversaly). The answer of this question is no since we can find a continuous function but your inverse is not continuous and the following example show that :

Example: Define the function $f:(\mathbb{R}, \tau_u) \to (\mathbb{R}, I)$; $f(x) = x \quad \forall \ x \in \mathbb{R}$ Notes that f is continuous since the rang is (\mathbb{R}, I) (see, page 37).

Notes that f is bijective, then f-1 is exists function and

 $f^{-1}:(\mathbb{R},\,I)\to(\mathbb{R},\,\tau_u)$, but this function not continuous since

 \exists open set (0, 1) in (\mathbb{R}, τ_u) , but $(f^{-1})^{-1}((0, 1)) = (0, 1)$ is not open in (\mathbb{R}, I) .

Now the question: Is there are functions is continuous and there inverse is continuous two??. The answer is yes and the following definition introduce this functions:

Definition: Homeomorphism Functions

Let $f:(X, \tau) \to (Y, \tau')$ be a function. The function f is called <u>homeomorphism</u> if its injective, surjective, continuous and f^{-1} continuous. i.e.,

 $f:(X,\tau)\to (Y,\tau')$ is homeomorphism \Leftrightarrow f 1-1, onto, continuous and f^{-1} continuous $f:(X,\tau)\to (Y,\tau')$ is not homeomorphism \Leftrightarrow

f not 1-1 \vee f not onto \vee f not continuous \vee f⁻¹ not continuous

Remark : Clear that every homeomorphism function is continuous, but the converse is not true for example :

$$f: (\mathbb{R}, \tau_n) \to (\mathbb{R}, I) \; ; \; f(x) = x \quad \forall \; x \in X$$

The function f is 1-1, onto, continuous, but f⁻¹ is not continuous. Therefore f is not homeomorphism.

Remark : If $f:(X,\tau)\to (Y,\tau')$ is homeomorphism function, this means : $(f^{-1})^{-1}(U)\in \tau' \quad \forall \quad U\in \tau \text{ (def of continuity), but } (f^{-1})^{-1}(U)=f(U) \text{ (since f bijective), so we can said}$

$$f^{\text{-1}} \text{ is continuous } \iff f(U) \in \tau' \quad \forall \ \ U \in \tau$$

but this is the definition of open function, so if f^{-1} is continuous this means f is open and vise versa with property that f is bijective. i.e.,

$$f^{-1}$$
 is continuous \Leftrightarrow f is open

if f is bijective (by previous remark, p. 47, f is open \Leftrightarrow f is closed), so that

$$f^{-1}$$
 is continuous \Leftrightarrow f is open \Leftrightarrow f is closed

i.e., the three concepts are equivalent and we can replace the definition of homeomorphism as follow:

f is homeomorphism \Leftrightarrow f is 1-1, onto, continuous and open.

 $f\ is\ homeomorphism \Leftrightarrow f\ is\ 1\text{--}1, onto, continuous and closed.}$ such that we replace the statement f^{-1} is continuous in definition of homeomorphism

Remarks:

- [1] If f is homeomorphism function, then f^{-1} is also homeomorphism function. since f is 1-1 and onto, then f^{-1} is 1-1 and onto since f is homeomorphism, then f^{-1} is continuous, also, $f = (f^{-1})^{-1}$ is continuous Therefore, f^{-1} is homeomorphism function.
- [2] If $f:(X,\tau)\to (Y,\tau')$ and $g:(Y,\tau')\to (Z,\tau'')$ are both homeomorphism functions, then the composition $gof:(X,\tau)\to (Z,\tau'')$ is homeomorphism. since f and g are 1-1 and onto, then gof is 1-1 and onto since f and g are continuous, then gof is continuous (by previous theorem) since f and g are homeomorphism, then f^{-1} and g^{-1} are continuous also $f^{-1}og^{-1}$ is continuous (by previous theorem) but, $f^{-1}og^{-1}=(gof)^{-1}$ is continuous.

Therefore, gof is homeomorphism function.

by either f open function or f closed function.

<u>Definition</u>: Homeomorphic Topologies

We called two topological spaces (X, τ) and (Y, τ') are <u>homeomorphic</u> if there exists a homeomorphism function from (X, τ) to (Y, τ') and denoted by $(X, \tau) \cong (Y, \tau')$ or $(Y, \tau') \cong (X, \tau)$. i.e.,

 $(X, \tau) \cong (Y, \tau') \Leftrightarrow \exists$ homeomorphism function $f: (X, \tau) \to (Y, \tau')$

<u>Theorem</u>: The relation \cong is an equivalent relation on the family of topological spaces.

<u>Proof</u>: We must prove the relation \cong is reflexive, symmetric and transitive.

- (1) To prove \cong is reflexive. i.e., $(X, \tau) \cong (X, \tau)$?? Define the identity function $f: (X, \tau) \to (X, \tau)$; $f(x) = x \quad \forall \ x \in X$ Clear that f is 1-1, onto, continuous and $f = f^{-1}$ so that f^{-1} is continuous Therefore, \cong is reflexive.
- (2) To prove \cong is symmetric. i.e., if $(X, \tau) \cong (Y, \tau') \Rightarrow (Y, \tau') \cong (X, \tau)$?? $\therefore (X, \tau) \cong (Y, \tau') \Rightarrow \exists$ homo. funct. $f: (X, \tau) \to (Y, \tau')$ by remark [1] above, we have f^{-1} is homo. funct. and $f^{-1}: (Y, \tau') \to (X, \tau) \Rightarrow (Y, \tau') \cong (X, \tau)$ Therefore, \cong is symmetric.
- (3) To prove \cong is transitive. i.e., if $(X, \tau) \cong (Y, \tau') \cong (Z, \tau'') \Rightarrow (X, \tau) \cong (Z, \tau'')$?? $\therefore (X, \tau) \cong (Y, \tau') \Rightarrow \exists \text{ homo. funct. } f: (X, \tau) \to (Y, \tau') \text{ and}$ $\therefore (Y, \tau') \cong (Z, \tau'') \Rightarrow \exists \text{ homo. funct. } g: (Y, \tau') \to (Z, \tau'') \text{ and}$ by remark [2] above, we have gof is homo. funct. and gof $: (X, \tau) \to (Z, \tau'') \Rightarrow (X, \tau) \cong (Z, \tau'')$ Therefore, \cong is transitive.

Theorem:

- (1) The bijective function $f:(X,\tau)\to (Y,\tau')$ is homeomorphism iff $\overline{f^{-1}(B)}=f^{-1}(\overline{B})\;;\;B\subseteq Y.$
- (2) The bijective function $f: (X, \tau) \to (Y, \tau')$ is homeomorphism iff $f^{-1}(B^{\circ}) = (f^{-1}(B))^{\circ}$; $B \subseteq Y$.

Proof:

(1) (\Leftarrow) Suppose that $\overline{f^{-1}(B)} = f^{-1}(\overline{B})$, to prove f Home., \because f is bij., we must prove f is cont. and f^{-1} is cont. $\because \overline{f^{-1}(B)} = f^{-1}(\overline{B}) \Rightarrow \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \Rightarrow f$ is cont. (by theory f is cont $\Leftrightarrow \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$; $B \subseteq Y$)

and
$$: \overline{f^{-1}(B)} = f^{-1}(\overline{B}) \Rightarrow f^{-1}(\overline{B}) \subseteq \overline{f^{-1}(B)} \Rightarrow f^{-1} \text{ is cont.}$$

(by theory f is cont $\Leftrightarrow f(\overline{B}) \subseteq \overline{f(B)}$; $B \subseteq X$ and f replace by f^{-1})

 $: f$ is Home.

(\Rightarrow) Suppose that f is Home., to prove $\overline{f^{-1}(B)} = f^{-1}(\overline{B})$
 $: f$ is home. $\Rightarrow f$ is cont. and f^{-1} is cont.

$$\Rightarrow \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \text{ and } f^{-1}(\overline{B}) \subseteq \overline{f^{-1}(B)}$$

$$\Rightarrow \overline{f^{-1}(B)} = f^{-1}(\overline{B})$$

(2) (\Leftarrow) Suppose that $f^{-1}(B^{\circ}) = (f^{-1}(B))^{\circ}$, to prove f Home.,

 $: f$ is bij., we must prove f is cont. and f^{-1} is cont.

$$: f^{-1}(B^{\circ}) = (f^{-1}(B))^{\circ} \Rightarrow f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ} \Rightarrow f$$
 is cont.

(by theory f is cont $\Leftrightarrow f^{-1}(B^{\circ}) \Rightarrow f^{-1}$ is cont.

(by theory f is cont $\Leftrightarrow f^{-1}(B^{\circ}) \Rightarrow f^{-1}$ is cont.

(by theory f is cont $\Leftrightarrow (f(B))^{\circ} \subseteq f(B^{\circ})$; f is Home.

(\Leftarrow) Suppose that f is Home., to prove $f^{-1}(B^{\circ}) = (f^{-1}(B))^{\circ}$

Definition: Topological Property

 \therefore f is home. \Rightarrow f is cont. and f⁻¹ is cont.

 \Rightarrow f⁻¹(B°) = (f⁻¹(B))°

A property "P" of a topological space (X, τ) is called a **topological property** iff every topological space (Y, τ') homeomorphic to (X, τ) also has the same property. i.e., if $(X, \tau) \cong (Y, \tau')$ and (X, τ) has a property "P", then (Y, τ') has the same property and vise versa.

 $\Rightarrow f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ} \text{ and } (f^{-1}(B))^{\circ} \subseteq f^{-1}(B^{\circ})$

Subspace or Induced space

<u>Definition</u>: Let (X, τ) be a topological space and $W \subseteq X$. Define the family τ_W as a family of subset of W as follow:

$$\tau_W = \{W \bigcap U \ : \ U \in \tau\}$$

Notes that the elements of τ_W are intersection W with every open set in X.

Theorem : Let (X, τ) be a topological space and $W \subseteq X$. Then $\tau_W = \{W \cap U : U \in \tau\}$ is a topology on W.

<u>Proof</u>: We will satisfy the three conditions in the definition of topological space.

(1) To prove, $W \in \tau_W$ and $\phi \in \tau_W$. $V \in \tau_W \cap W = W = W$

$$\begin{array}{cccc} :: & X \in \tau \ \land \ W \subseteq X \ \Rightarrow \ W = W \bigcap X \ \Rightarrow \ W \in \tau_W \\ :: & \varphi \in \tau \ \land \ \varphi \subseteq X \ \Rightarrow \ \varphi = W \bigcap \varphi \ \Rightarrow \ \varphi \in \tau_W \end{array} \right. \qquad \text{(def. of τ_W)}$$

(2) Let $V_1, V_2 \in \tau_W$, to prove $V_1 \cap V_2 \in \tau_W$

$$\begin{array}{lll} :: & V_1 \in \tau_W \implies \exists & U_1 \in \tau \; \; ; \; V_1 = W \bigcap U_1 \\ :: & V_2 \in \tau_W \implies \exists & U_2 \in \tau \; \; ; \; V_2 = W \bigcap U_2 \end{array} \qquad (def. \ of \ \tau_W) \end{array}$$

$$\Rightarrow V_1 \cap V_2 = (W \cap U_1) \cap (W \cap U_2)$$

\Rightarrow V_1 \cap V_2 = W \cap (U_1 \cap U_2) \quad \text{(since \cap distribution on \cap)}

$$\Rightarrow V_1 \bigcap V_2 \in \tau_W \qquad (def. of \tau_W)$$

(3) Let $V_{\alpha} \in \tau_W$; $\alpha \in \Lambda$, to prove $\bigcup_{\alpha \in \Lambda} V_{\alpha} \in \tau_W$

$$\begin{array}{cccc} : & V_{\alpha} \in \tau_{W} \implies \exists & U_{\alpha} \in \tau \; ; \; V_{\alpha} = W \bigcap U_{\alpha} \; ; \; \alpha \in \Lambda \\ & \implies \bigcup_{\alpha \in \Lambda} V_{\alpha} = \bigcup_{\alpha \in \Lambda} (W \bigcap U_{\alpha}) \\ & \implies \bigcup_{\alpha \in \Lambda} V_{\alpha} = W \bigcap (\bigcup_{\alpha \in \Lambda} U_{\alpha}) \\ & \in \tau \\ & \implies \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \tau_{W} \end{array} \tag{def. of } \tau_{W})$$

Therefore, τ_W is a topology on W.

Definition: Subspace (or Induced) Topology

Let (X, τ) be a topological space and $W \subseteq X$. Then the topology τ_W is called the <u>subspace</u> (or <u>induced</u>) topology for W and the pair (W, τ_W) is called <u>subspace</u> of (X, τ) .

Example : Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, c\}\}$, $W = \{a, b\}$, $Z = \{b\}$ and $K = \{a, c\}$. Find τ_W , τ_Z , τ_K .

Solution:

$$\begin{split} \tau_W &= \{W \bigcap U \ : \ U \in \tau\} \\ \tau_W &= \{W \bigcap X, W \bigcap \phi, W \bigcap \{a\}, W \bigcap \{a,c\}\} \\ &= \{W, \phi, \{a\}\} \end{split}$$

By similar way we compute τ_Z , τ_K .

$$\begin{split} \tau_Z &= \{Z \bigcap U \ : \ U \in \tau\} \\ \tau_Z &= \{Z \bigcap X, Z \bigcap \phi, Z \bigcap \{a\}, Z \bigcap \{a,c\}\} \\ &= \{Z,\phi\} = I_Z = \textbf{indiscrete topology on } \textbf{Z} \\ \tau_K &= \{K \bigcap U \ : \ U \in \tau\} \\ \tau_K &= \{K \bigcap X, K \bigcap \phi, K \bigcap \{a\}, K \bigcap \{a,c\}\} = \{K,\phi,\{a\}\}. \end{split}$$

Remarks:

[1] Notes that there is an open set in the subspace but it's not open in the space. In the previous example the set $W = \{a, b\}$ is open in the subspace (W, τ_W) but it is not open in the space (X, τ) i.e., $W \notin \tau$, so we have :

$$V \in \tau_w \not\Longrightarrow V \in \tau$$

In other word $\tau_W \not\subset \tau$ (in general).

- [2] If $W \in \tau$, then $\tau_W \subseteq \tau$.
- [3] Notes that, in the previous example $\tau_Z = I_Z = \{Z, \phi\}$, but $\tau \neq I_X = \{X, \phi\}$.
- [4] There are some example $\tau_W = D_W =$ discrete topology on W, but $\tau \neq D_X$ i.e.,

$$(\tau_{\rm w} = {\rm D}_{\rm W} \implies \tau = {\rm D}_{\rm X})$$

For example: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}, \{c, d\}\}$ and $W = \{a, c\}$, then $\tau_W = \{W, \phi, \{a\}, \{c\}\} = D_W$

[5] If $\tau_X = D_X$, then $\tau_W = D_W$ for all $W \subseteq X$. (i.e., $\tau_X = D_X \implies \tau_W = D_W$)

To prove this property it's enough to prove that every singleton subset of W is open set in W.

Let
$$y \in W \implies \{y\} \subseteq W$$
, to prove $\{y\} \in \tau_W$??
 $\therefore \{y\} \subseteq W \subseteq X \implies \{y\} \subseteq X \implies \{y\} \in D_X$

since
$$\{y\} = W \cap \{y\} \implies \{y\} \in \tau_W$$

 $\Rightarrow \tau_W = D_W$.

[6] If
$$\tau = I_X = \{X, \phi\}$$
, then $\tau_W = I_W = \{W, \phi\}$. (i.e., $\tau = I_X \implies \tau_W = I_W$)

To prove this property

$$\tau_W = \{W \bigcap U \ : \ U \in \tau\} = \{W \bigcap X, W \bigcap \varphi\} = \{W, \varphi\}.$$

Example : In the usual topological space (\mathbb{R} , τ_u). Find the induced topology for the following sets : W = [0, 1], $H = \mathbb{N}$, $M = \mathbb{Q}$, K = [2, 3).

<u>Solution</u>: The open sets in (\mathbb{R}, τ_u) is the union of family of open interval and the family of open interval is a basis for topology τ_u . So we will use the open interval to compute the basis for induce topology for given set as follow:

W = [0, 1] ??

From the probability above the basis for induce topology τ_W is

$$\beta_{W} = \{[0, 1], \phi, (a, b), [0, b), (a, 1]\}$$

Notes that the elements in this family is infinite since a, $b \in \mathbb{R}$.

$\mathbf{H} = \mathbb{N}$??

The induce topology for $H = \mathbb{N}$ is discrete topology $D_{\mathbb{N}}$ since :

Let (a, b) open interval in (\mathbb{R}, τ_u) ; $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$; n - 1 < a < n and n < b < n + 1.

This means that every singleton set (i.e., $\mathbb{N} \cap (a, b) = \{n\}$) from \mathbb{N} is open in \mathbb{N} (i.e., $\{n\} \in \tau_{\mathbb{N}}$). Therefore $\tau_{\mathbb{N}} = D$.

$\mathbf{M} = \mathbf{Q}$??

We will intersect \mathbb{Q} with every open interval (a, b) in (\mathbb{R}, τ_u) ; $a, b \in \mathbb{R}$.

 $\mathbb{Q} \bigcap (a, b) =$ the rational numbers in (a, b) and the basis for induce topology $\tau_{\mathbb{Q}}$ is

$$\beta_{\mathbb{Q}} = {\mathbb{Q} \cap (a, b) ; a, b \in \mathbb{R}}.$$

K = [2, 3) ??

To compute the induce topology τ_K ; K = [2, 3) is similar of compute the induce topology τ_W ; W = [0, 1] above by replace [0, 1] by [2, 3) as follow:

From the probability above the basis for induce topology τ_K is

$$\beta_K = \{[2, 3), \phi, (a, b), [2, b), (a, 3)\}.$$

We can compute the induce topology for the intervals [c, d], [c, d), (c, d], (c, d) by similar way by taken this probality and replace W = [0, 1] or K = [2, 3) by [c, d], [c, d), (c, d], (c, d).

Theorem : Let (X, τ) be a topological space and (W, τ_W) be a subspace topology of X. If $W \in \tau$, then τ_W is subfamily of τ . i.e.,

If W open set in X, then every open set in W is open in X.

<u>Proof</u>: We must prove the following statement $\tau_W \subseteq \tau$ (i.e., if $V \in \tau_W \implies V \in \tau$)

$$\begin{array}{lll} \text{Let} & V \in \tau_W \implies \exists \ U \in \tau \ ; \ V = W \bigcap U & (\text{def. of } \tau_W) \\ & \because \ W \in \tau \ (\text{by hypothesis}) \ \land \ U \in \tau \\ & \implies W \bigcap U \in \tau & (\text{def. of Top.}) \\ & \implies V \in \tau & (\text{since } V = W \bigcap U) \\ \end{array}$$

The following example clear this theorem:

Example : Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\}$ and $W = \{a, b, c\}$. Find τ_W .

Solution:

Clear $W \in \tau$. To compute τ_W :

$$\begin{split} \tau_W &= \{W \bigcap U \ : \ U \in \tau\} \\ \tau_W &= \{W \bigcap X, \, W \bigcap \phi, \, W \bigcap \{a\}, \, W \bigcap \{a, \, b\}, \, W \bigcap \{a, \, b, \, c\}\} \\ &= \{W, \, \phi, \, \{a\}, \, \{a, \, b\}\} \end{split}$$

Notes that τ_W is subfamily of τ (i.e., $\tau_W \subseteq \tau$).

Remark : From definition of induce topology τ_W , notes that :

$$V \in \tau_W \iff \exists \ U \in \tau \ ; \, V = W \bigcap U$$

The question now what about the close set, the previous statement satisfy or not ?? The answer **yes** such that :

$$A \in \left(\tau_W\right)^c \iff \exists \ F \in \tau^c \ ; \ A = W \bigcap F$$

By other statement:

$$A\in \mathcal{F}_W \iff \exists\ F\in \mathcal{F}\ ;\ A=W\bigcap F$$

Such that \mathcal{F} is the family of closed sets in X and \mathcal{F}_W is the family of closed sets in W.

Example : Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $W = \{b, c\}$.

Then $\tau_W = \{W, \phi, \{b\}\}, \mathcal{F} = \{X, \phi, \{b, c\}, \{a, c\}, \{c\}\} \text{ and } \mathcal{F}_W = \{W^c, \phi^c, \{b\}^c\} \text{ such that :}$

$$\mathcal{F}_{W} = \{W^{c}, \phi^{c}, \{b\}^{c}\} = \{\phi, W, \{c\}\}\$$

$$= \{W \bigcap X, W \bigcap \phi, W \bigcap \{b, c\}, W \bigcap \{a, c\}, W \bigcap \{c\}\}\$$

Theorem: If K is a subspace from W and W is a subspace from X, then K is a subspace from X.

<u>Proof</u>: Let (X, τ) be a topological space and $W \subseteq X$, $K \subseteq W$, to prove K is a subspace from X, must prove :

- (1) $K \subset X$
- (2) if $A \in (\tau_W)_K \implies \exists \ U \in \tau \ ; \ A = K \cap U$ Now.
- $(1) \quad \text{Since } K \subseteq W \subseteq X \quad \Rightarrow \quad K \subseteq X.$
- (2) Let $A \in (\tau_W)_K \Rightarrow \exists \ V \in \tau_W \ ; \ A = K \cap V$ (def. of induce top. and K is a sub space from W) $\because \ V \in \tau_W \Rightarrow \exists \ U \in \tau \ ; \ V = W \cap U$ (def. of induce top. and W is a sub space from X) $\because \ A = K \cap V \Rightarrow A = K \cap (W \cap U)$ (since $V = W \cap U$) $\Rightarrow A = (K \cap W) \cap U$ (\cap associative)

Definition: Restriction Function

Let $f: X \to Y$ be a function and let $A \subseteq X$. We say the function $g: A \to Y$ such that g(a) = f(a) for all $a \in A$ is the <u>restriction function</u> on the set A and denoted by $g = f \mid A$.

 \Rightarrow A = K \bigcap U (since K \subseteq W and K = K \bigcap W)

Example : Let $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = x + 1 be a function.

Notes that the domain of f is \mathbb{R} , take $\mathbb{N} \subseteq \mathbb{R}$ and

 $f|_{\mathbb{N}}: \mathbb{N} \to \mathbb{R}$ such that $(f|_{\mathbb{N}})(x) = x + 1$.

 $f|_{\mathbb{N}}$ is restriction function on the set \mathbb{N} .

We will use this definition to introduce the following theorem:

Theorem : Let $f:(X, \tau) \to (Y, \tau')$ be a continuous function and W be a subspace topology from X. Then $f|_W$ is continuous.

$$\begin{split} & \underline{\textbf{Proof:}} \text{ To prove, } f \mid_W : (W, \tau_W) \to (Y, \tau') \text{ is continuous } ?? \\ & \text{i.e., to prove if} \quad V \in \tau' \quad \Rightarrow \quad (f \mid_W)^{\text{-1}}(V) \in \tau_W \\ & \text{Let } V \in \tau' \quad \Rightarrow \quad f^{\text{-1}}(V) \in \tau \\ & \Rightarrow \quad W \bigcap f^{\text{-1}}(V) \in \tau_W \\ & \Rightarrow \quad (f \mid_W)^{\text{-1}}(V) \in \tau_W \\ & \Rightarrow \quad (f \mid_W)^{\text{-1}}(V) \in \tau_W \\ \end{split} \tag{Since } W \bigcap f^{\text{-1}}(V) = (f \mid_W)^{\text{-1}}(V))$$

 \therefore f |_w is cont.

Remark: From previous theorem we can get on an infinite number from continuous functions thought out know one continuous function for example:

 $f:(\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_u)$ such that f(x) = x + 2 is continuous function.

: every functions of follows is continues function :

$$f|_{\mathbb{N}}$$
, $f|_{\mathbb{Q}}$, $f|_{[2,3]}$, $f|_{(0,\infty)}$... etc.

We can get another of an infinite number from new continuous functions by theorem blow:

Theorem : Let (X, τ) be a topological space and (W, τ_W) be a subspace of X. Then the inclusion function $i: (W, \tau_W) \to (X, \tau)$ such that i(x) = x for all $x \in W$ is continuous.

Proof: To prove if $V \in \tau \implies i^{-1}(V) \in \tau_W$

Let
$$V \in \tau \implies i^{-1}(V) = W \cap V$$
 (since $W \subseteq X$ and def. of i) $\implies i^{-1}(V) \in \tau_W$ (since $W \cap V \in \tau_W$ and by def. of τ_W)

 \therefore i is cont.

Let (X,τ) be a topological space and (W,τ_W) be a subspace topology of X and $A\subseteq W\subseteq X$. We can compute \overline{A} , A^o , A^b in (X,τ) and from the other hand we can compute \overline{A} , A^o , A^b in (W,τ_W) . The question what relation between $(\overline{A}$ in X and \overline{A} in X and X in X

Theorem : Let (X, τ) be a topological space and (W, τ_W) be a subspace topology of X and $A \subseteq W \subseteq X$, then

- (1) $W \cap \overline{A} = \overline{A}$ in W; \overline{A} is closure of A in X
- (2) $W \cap A^{\circ} \subseteq A^{\circ}$ in W.
- (3) $W \cap A^b \supseteq A^b$ in W.

Proof:

(1) To prove, $W \cap \overline{A} = \overline{A}$ in W we must prove, $W \cap \overline{A} \subseteq \overline{A}$ in W and $W \cap \overline{A} \supseteq \overline{A}$ in W $\therefore A \subseteq W \subseteq X \Rightarrow \overline{A} \in \mathcal{F}$ (by previous theorem \overline{A} is closed in X) $\Rightarrow \overline{A} \cap W \in \mathcal{F}_W$ (\overline{A} is closed in W)

Now,

$$A\subseteq W \quad \wedge \quad A\subseteq \overline{A} \quad \Rightarrow \quad A\subseteq W \bigcap \ \overline{A}$$

Notes that $W \cap \overline{A}$ is closed set in W and containing A, but \overline{A} in W is the smallest closed set in W contain A, so we get

$$\Rightarrow \overline{A} \text{ in } W \subseteq W \cap \overline{A}$$
 -----(1)

and,

$$\begin{array}{l} :: W \bigcap \overline{A} \in \mathcal{F}_W \Rightarrow \exists \ F \in \mathcal{F} : \ \overline{A} \ in \ W = W \bigcap F \\ \Rightarrow A \subseteq F \\ \Rightarrow \overline{A} \subseteq \overline{F} = F \ \Rightarrow \ \overline{A} \subseteq F \\ \Rightarrow W \bigcap \overline{A} \subseteq W \bigcap F = \overline{A} \ in \ W \\ \Rightarrow W \bigcap \overline{A} \subseteq \overline{A} \ in \ W \end{array} \qquad \begin{array}{l} (\overline{F} = F \ since \ F \ is \ closed) \\ \xrightarrow{\longrightarrow} W \bigcap \overline{A} \subseteq \overline{A} \ in \ W \\ \xrightarrow{\longrightarrow} W \bigcap \overline{A} \subseteq \overline{A} \ in \ W \end{array}$$

From (1) and (2) we have, $W \cap \overline{A} = \overline{A}$ in W.

(2) To prove, $W \cap A^{\circ} \subseteq A^{\circ}$ in W

$$\begin{split} A^o &\in \tau \ \, \Rightarrow \ \, W \bigcap A^o \in \tau_W \\ &\Rightarrow \ \, W \bigcap A^o \subseteq A^o \subseteq A \ \, \Rightarrow \ \, W \bigcap A^o \subseteq A \\ &\Rightarrow \ \, W \bigcap A^o \subseteq A^o \text{ in } W \ \, (\text{since } W \bigcap A^o \text{ open in } W \text{ contain in } A) \end{split}$$

i.e., Ao in W must contain all open set in W contain in A.

(3) To prove, A^b in $W \subseteq A^b \cap W$.

$$\begin{array}{c} \text{Let } x \in A^b \text{ in } W \implies \forall \ V \in \tau_W \,, \, x \in V \; ; \, V \bigcap A \neq \phi \, \wedge \, V \bigcap A^c \neq \phi \\ & \text{(By def. of boundary point)} \\ \therefore \ V \in \tau_W \implies \exists \ U \in \tau \; ; \, V = W \bigcap U \qquad \qquad \text{(def. of } \tau_W) \\ \end{array}$$

$$\Rightarrow \forall U \in \tau, x \in U, U \cap A \neq \phi \land U \cap A^c \neq \phi$$

$$\Rightarrow x \in A^b \Rightarrow x \in A^b \cap W \qquad (since x)$$

$$\therefore A^b \text{ in } W \subseteq A^b \cap W$$

(since $x \in V \subset W$)

Remark: The equality of properties (2) and (3) in the previous theorem is not true in general and the following example clear that:

$$\begin{split} & \underline{\textbf{Example:}} \text{ Let } X = \{a,b,c,d\}, \, \tau = \{X,\varphi,\{a\},\{a,b\},\{a,b,c\}\} \text{ and } W = \{a,c,d\}. \\ & \text{Then } \tau_W = \{W,\varphi,\{a\},\{a,c\}\}, \, A = \{a,c\} \\ & A = \{a,c\} = A^o \text{ in } W \text{ since } A \in \tau_W \text{ and } A^o = \{a\}. \end{split}$$

Since $\{a\}$ is largest open set in X containing in $A \Rightarrow$

 $A^{\circ} \cap W = \{a\} \cap \{a, c, d\} = \{a\} \implies A^{\circ} \text{ in } W \neq A^{\circ} \cap W \text{ since } \{a, c\} \neq \{a\}$ On the other hand to compute A^b, A^b in W, we will compute A^x, A^x in W such that A^{x} in $W = \phi$, then

$$A^{b}$$
 in $W = W - (A^{o}$ in $W \cup A^{x}$ in $W) = W - \{a, c\} = \{d\}$

$$\therefore$$
 A^b in W = {d}

$$A^{x} = \phi \implies A^{b} = X - (A^{o} \bigcup A^{x}) = X - \{a\} = \{b, c, d\}$$
$$\Rightarrow A^{b} \bigcap W = \{c, d\}$$

$$\therefore$$
 A^b in W \neq A^b \bigcap W

To check property (1) in the previous theorem we compute \overline{A} and \overline{A} in W as follow:

$$\overline{A}$$
 in $W = W$ and $\overline{A} = X \implies \overline{A} \cap W = X \cap W = W$

$$\therefore \overline{A} \text{ in } W = \overline{A} \cap W$$

Product Space

<u>Definition</u>: Cartesian Product

Let X and Y be any two sets. The **Cartesian product**, or simply **product** of X by Y is denoted by X×Y and denoted as:

$$X \times Y = \{(x, y) ; x \in X \land y \in Y\}$$

Definition: Product Space

Let (X, τ) and (Y, τ') be two topological spaces. We say the topology has a base β ;

$$\beta = \{\ U{\times}V\ ;\ U \in \tau \wedge\ V \in \tau'\}$$

Is the **Product Topology** on the set $X \times Y$ and denoted by $\tau_{X \times Y}$ and called the spaces $(X\times Y, \tau_{X\times Y})$ is the **Product Space** of X by Y.

Remark: Notes that β in general not topology since it's not satisfy the third condition of topology, but since β is a base for topology, so we can get the three condition of topology and the following example show that:

Example : Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}\}, Y = \{a, b\} \text{ and } \tau' = \{Y, \phi, \{b\}\}.$ Compute $\tau_{X\times Y}$.

Solution:

$$\begin{split} X \times Y &= \{(x,y) \; ; \; x \in X \land \; y \in Y\} \\ &= \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\} \\ \beta &= \{\; U \times V \; ; \; U \in \tau \land \; V \in \tau'\} \\ &= \{X \times Y, \; X \times \phi, \; X \times \{b\}, \; \phi \times Y, \; \phi \times \phi, \; \phi \times \{b\}, \; \{1\} \times Y, \; \{1\} \times \phi, \; \{1\} \times \{b\}\} \\ &= \{ x \times Y, \; x \times \phi, \; x \times \{b\}, \; \phi \times Y, \; \phi \times \phi, \; \phi \times \{b\}, \; \{1\} \times Y, \; \{1\} \times \phi, \; \{1\} \times \{b\}\} \end{split}$$

$$= \{X \times Y, \phi, X \times \{b\}, \{1\} \times Y, \{1\} \times \{b\}\}\$$

Since $A \times \phi = \phi$ and $\phi \times A = \phi$ for any set A.

$$\beta = \{X \times Y, \phi, \{(1, b), (2, b), (3, b)\}, \{(1, a), (1, b)\}, \{(1, b)\}\}$$

Notes that β is not topology since

$$\{(1, b), (2, b), (3, b)\} \bigcup \{(1, a), (1, b)\}\} \notin \beta$$

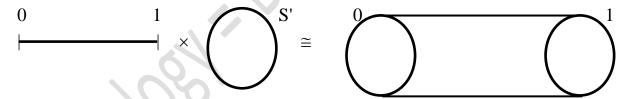
The elements of $\tau_{X\times Y}$ is elements of β and add all possible union of elements of β ;

$$\therefore \tau_{X\times Y} = \{X\times Y, \phi, \{(1, b), (2, b), (3, b)\}, \{(1, a), (1, b)\}, \{(1, b)\}, \{(1, b), (2, b), (3, b), (1, a)\}\}.$$

Remark : We can compute the product space $(X \times X, \tau_{X \times X})$ depending on (X, τ_X) only, also we can compute $(Y \times Y, \tau_{Y \times Y})$, $(Y \times X, \tau_{Y \times X})$, $(X \times Y \times Z, \tau_{X \times Y \times Z})$, ... etc., there are an infinite number from product spaces which can computing from one space known or more than one space. In general $X \times Y \neq Y \times Y$.

From known product spaces which we use always is usual space \mathbb{R}^n ; $n \in \mathbb{N}$ and the most common one is \mathbb{R}^2 which represent the plane and its product space follow from product (\mathbb{R}, τ_u) by self.

Example : Let X = [0, 1] be a subspace of (\mathbb{R}, τ_u) and take $S' = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 = 1\}$ be a subspace of (\mathbb{R}^2, τ_u) such that S' geometry represented as a circle in plane its center the original point (0, 0). Then $[0, 1] \times S'$ is a cylinder as follow :



Remarks: Let (X, τ) and (Y, τ') be any two topological spaces.

$$\begin{split} \text{[1]} \quad &\text{If } \tau = I_X \text{ and } \tau' = I_Y \text{ , then } \tau_{X\times Y} = I_{X\times Y} \text{ , i.e.,} \\ &\text{If } \tau = \!\! \{X, \, \phi\} \text{ and } \tau' = \{Y, \, \phi\}, \text{ then } \tau_{X\times Y} = \{X\times Y, \, \phi\} \text{ and } \beta \text{ is :} \\ &\beta = \{X\times Y, \, X\times \phi, \, \phi\times Y, \, \phi\times \phi\} = \{X\times Y, \, \phi\} = I_{X\times Y} \end{split}$$

- [2] If $\tau = I_X$ and $\tau' \neq I_Y$ or $\tau \neq I_X$ and $\tau' = I_Y$, then $\tau_{X \times Y} \neq I_{X \times Y}$, for example : If $X = \{1, 2\}, \ \tau = \{X, \phi, \{1\}\}, \ Y = \{a, b\} \ \text{and} \ \tau' = \{Y, \phi\}, \text{ then}$ $\beta = \{X \times Y, \phi, \{1\} \times Y\} = \{X \times Y, \phi, \{(1, a), (1, b)\}\} = \tau_{X \times Y} \neq I_{X \times Y}$
- [3] If $\tau = D_X$ and $\tau' = D_Y$, then $\tau_{X \times Y} = D_{X \times Y}$,

 Proof. To prove any topology is discrete topology it's enough to prove every singleton set is open i.e., $(\forall \{(x,y)\} \text{ singleton set} \Rightarrow \{(x,y)\} \in \tau_{X \times Y})$

$$\begin{aligned} \{(x,y)\} &= \{x\} \times \{y\} & \text{ (def. Cartesian product of } X \text{ by } Y) \\ \{x\} &\in \tau & \text{ (since } \tau = D_X) \\ \{y\} &\in \tau' & \text{ (since } \tau' = D_Y) \\ \{(x,y)\} &\in \beta_{X \times Y} & \text{ (def. product spaces)} \end{aligned}$$

- [4] If $\tau \neq D_X$ or $\tau' \neq D_Y$, then $\tau_{X \times Y} \neq D_{X \times Y}$, and the following example show that : If $X = \{1, 2\}$, $\tau = \{X, \phi, \{1\}, \{2\}\} = D_X$, $Y = \{a, b\}$ and $\tau' = \{Y, \phi\} \neq D_Y$, then $\beta = \{X \times Y, \phi, \{1\} \times Y, \{2\} \times Y\}$ $= \{X \times Y, \phi, \{(1, a), (1, b)\}, \{(2, a), (2, b)\}\} = \beta_{X \times Y} = \tau_{X \times Y} \neq D_{X \times Y}$
- [5] If $A \subseteq X$ and $B \subseteq Y$, then $A \times B \subseteq X \times Y$ and we can compute the closure of $A \times B$ in $X \times Y$ (i.e., $\overline{A \times B}$), on the other hand there are \overline{A} in X and \overline{B} in Y, also we can compute $\overline{A} \times \overline{B}$ and the question what relation between $\overline{A \times B}$ and $\overline{A} \times \overline{B}$ and the answer $\overline{A \times B} = \overline{A} \times \overline{B}$.

Also, by similar way we can conclusion $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$.

[6] There are two natural projection functions from product space $X \times Y$ to codomain X and others to codomain Y and denoted by P_X and P_Y and called the first project $X \times Y$ on Y and called the second project $X \times Y$ on Y. We will show that the two functions are surjective, continuous and open as follows:

$$P_X: X \times Y \to X$$
 ; $P_X((x, y)) = x$ and $P_Y: X \times Y \to Y$; $P_Y((x, y)) = y$

; the first projection map the order pair (x, y) to first coordinate while the second projection map the order pair (x, y) to the second coordinate.

To prove, P_X is continuous function

 \therefore P_X is continuous functions

By similar way we prove P_Y is continuous functions

$$\begin{array}{ll} \text{Let } V \in \tau' & \Rightarrow \ P_Y^{-1}(V) = X \times V \\ & :: \ X \in \tau \ \land \ V \in \tau' \ \Rightarrow \ X \times V \in \beta_{X \times Y} \\ & \Rightarrow \ X \times V \in \tau_{X \times Y} \\ & \Rightarrow P_Y^{-1}(V) \in \tau_{X \times Y} \end{array} \qquad (\text{since } \beta_{X \times Y} \subset \tau_{X \times Y})$$

 \therefore P_Y is continuous functions

To prove, P_X is open function

$$\begin{array}{cccc} \text{Let } U \times V \in \beta_{X \times Y} \Rightarrow U \times V \text{ open set in } X \times Y & ; & U \in \tau & \wedge & V \in \tau' \\ & \Rightarrow & P_X(U \times V) = U \\ & \therefore & U \in \tau & \Rightarrow & P_X(U \times V) \in \tau \end{array}$$

 \therefore P_X is open functions

By similar way we prove P_Y is open functions

$$\begin{array}{cccc} \text{Let } U \times V \in \beta_{X \times Y} & \Longrightarrow & U \times V \text{ open set in } X \times Y & ; & U \in \tau & \wedge & V \in \tau' \\ & & \Longrightarrow & P_Y(U \times V) = V \\ & \because & V \in \tau' & \Longrightarrow & P_Y(U \times V) \in \tau \end{array}$$

- \therefore P_Y is open functions.
- [7] Notes that $X \times Y \neq Y \times X$ since $(x, y) \neq (y, x)$ in general, but $X \times Y \cong Y \times X$ (i.e., $X \times Y$, $Y \times X$ are Homeomorphic), to prove this:

Define
$$f: X \times Y \rightarrow Y \times X$$
; $f((x, y)) = (y, x)$
f is 1-1 function since,
Let $f((x_1, y_1)) = f((x_2, y_2)) \Rightarrow (y_1, x_1) = (y_2, x_2)$

Let
$$f((x_1, y_1)) = f((x_2, y_2)) \Rightarrow (y_1, x_1) = (y_2, x_2)$$

$$\Rightarrow x_1 = x_2 \land y_1 = y_2$$

$$\Rightarrow (x_1, y_1) = (x_2, y_2).$$

f is onto function since,

$$\forall (y, x) \in Y \times X \exists (x, y) \in X \times Y ; f((x, y)) = (y, x).$$

f is continuous function since,

Let β be a base of X×Y and β ' be a base of Y×X

$$\begin{split} \text{Let } V \times U \in \beta' & \implies V \in \tau' \ \land \ U \in \tau \\ & \implies V \times U \ \in \tau_{Y \times X} \\ & \implies f^{\text{-1}}(V \times U) = U \times V \ \text{ open set in } X \times Y \end{split}$$

f is open function since, the image of every open set in domain is open set in codomain;

$$\begin{array}{lll} \text{Let } U \times V \in \beta & \Rightarrow U \times V \text{ open set in } X \times Y & ; \ U \in \tau \quad \land \quad V \in \tau' \\ & \Rightarrow f(U \times V) = V \times U \ \in \tau_{Y \times X} \end{array}$$

- : f is homeomorphism function.
- [8] If $y_0 \in Y$, then the product space $X \times \{y_0\}$ topological equivalent the space X.

i.e.,
$$X \times \{y_0\} \cong X$$
 ; $X \times \{y_0\} = \{(x, y_0) : x \in X\}$

To prove this:

Define
$$f: X \to X \times \{y_0\}$$
 ; $f(x) = (x, y_0) \quad \forall x \in X$

f is 1-1 function since,

Let
$$f(x_1) = f(x_2) \implies (x_1, y_0) = (x_2, y_0)$$

 $\implies x_1 = x_2 \quad \forall x_1, x_2 \in X$

f is onto function since,

$$\forall~(x,y_0)\in X\times\{y_0\}~\exists~x\in X~;~f(x)=(x,y_0)$$

f is continuous function, since the sets in the base of the space $X \times \{y_0\}$ is $U \times \{y_0\}$; $U \in \tau$ or ϕ , then

$$f^{-1}(U \times \{y_0\}) = U \in \tau$$
 and $f^{-1}(\phi) = \phi \in \tau$

f is open function, since if U is open in domain X, then $f(U) = U \times \{y_0\}$ and $U \times \{y_0\}$ is open in codomain $X \times \{y_0\}$.

:. f is homeomorphism function.

[9] If $x_0 \in X$, then the product space $\{x_0\} \times Y$ topological equivalent the space Y. i.e., $\{x_0\} \times Y \cong Y$; $\{x_0\} \times Y = \{(x_0, y) : y \in Y\}$

To prove this: (By a similar way of [8])

Define $f: Y \to \{x_0\} \times Y$; $f(y) = (x_0, y) \quad \forall y \in Y$

f is 1-1 function since,

Let
$$f(y_1) = f(y_2) \implies (x_0, y_1) = (x_0, y_2)$$

 $\implies y_1 = y_2 \quad \forall y_1, y_2 \in Y$

f is onto function since,

$$\forall (x_0, y) \in \{x_0\} \times Y \exists y \in Y ; f(y) = (x_0, y)$$

f is continuous function, since the sets in the base of the space $\{x_0\}\times Y$ is $\{x_0\}\times V$; $V\in \tau'$ or ϕ , then

$$f^{\text{-1}}(\{x_0\}\times V)=V\in\tau'\quad\text{ and } f^{\text{-1}}(\phi)=\phi\in\tau'$$

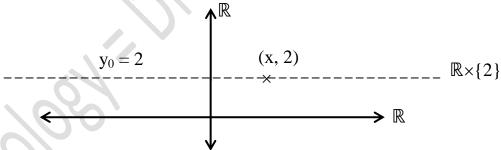
f is open function, since if V is open in domain Y, then $f(V) = \{x_0\} \times V$ and $\{x_0\} \times V$ is open in codomain $\{x_0\} \times V$.

:. f is homeomorphism function.

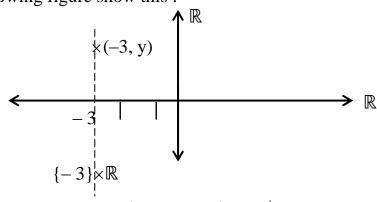
Notes that $X \times \{y_0\}$ is a sub space of the space $X \times Y$ and represented horizontal section in the space $X \times Y$ at the point y_0 . Also, $\{x_0\} \times Y$ is a sub space of the space $X \times Y$ and represented vertical section in the space $X \times Y$ at the point x_0 .

For example, take $X=Y=\mathbb{R}$ and $\tau=\tau'=\tau_u$, then the product space $X\times Y$ is the known plane \mathbb{R}^2 .

Let $y_0 = 2$, then $X \times \{y_0\} = \mathbb{R} \times \{2\}$ is subspace from \mathbb{R}^2 and represented as horizontal line segment and the following figure show this :



Let $x_0=-3$, then $\{x_0\}\times Y=\{-3\}\times \mathbb{R}$ is subspace from \mathbb{R}^2 and represented as vertical line segment and the following figure show this :



أ. د. رشا ناصر مجيد

. د. پوسف پعکوب پوسف

<u>Definition</u>: Quotient Space

Let (X, τ_X) be a topological space and Y be any set. Let $f: X \to Y$ be a surjective function, then the set

$$\tau_f = \{G \subseteq Y \; ; \, f^{\text{-1}}(G) \in \tau_X\}$$

Is a topology on Y this topology called **quotient topology** on Y generated by f and (X, τ_X) .

Question : The topology $\tau_f = \{G \subseteq Y ; f^{-1}(G) \in \tau_X\}$ is the largest topology on Y make the function f continuous.

Answer: Let τ be another topology on Y making f continuous.

- \Rightarrow f⁻¹(G) is open in X \forall G \in τ .
- $\Rightarrow G \in \tau_f$ (def. of τ_f)
- $\Rightarrow \tau \subseteq \tau_f$
- $\Rightarrow \tau_f$ is the largest topology on Y making f is continuous.

Theorem : Let $f:(X, \tau_X) \to (Y, \tau_Y)$ be a continuous surjective function, if f either open or closed, then $\tau_f = \tau_Y$.

Proof:

Clearly, $\tau_Y \subseteq \tau_f$ (by previous question)

Now, to show that $\tau_f \subseteq \tau_Y$

Let $G \in \tau_f \implies f^{-1}(G) \in \tau_X$

 \Rightarrow f(f⁻¹(G)) = G is open in Y (since f is open)

- $\Rightarrow G \in \tau_Y$
- $\Rightarrow \ \tau_f \subseteq \tau_Y$

So, $\tau_f = \tau_Y$.

By similar way if f is closed.

<u>Theorem</u>: Let Y has the quotient space generated by the surjective function $f: X \to Y$, then $g: Y \to Z$ is continuous function if and only if gof is continuous function.

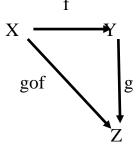
Proof:

- (\Rightarrow) The composition of continuous functions is continuous.
- (\Leftarrow) Let G be open set in Z

Since gof is cont. \Rightarrow (gof)⁻¹(G) = f⁻¹(g⁻¹(G)) is open in X

But $g^{\text{-}1}(G) \subseteq Y \wedge f^{\text{-}1}(g^{\text{-}1}(G))$ is open in X

- \Rightarrow g⁻¹(G) is open in Y (by definition of τ_f , g⁻¹(G) $\in \tau_f$)
- \Rightarrow g is continuous.



Remarks:

- [1] Let X be a nonempty set. The <u>partition</u> or <u>decomposition</u> on X with the relation R is the family of disjoint nonempty subsets of X and their union equal X. The elements of this partition called <u>equivalence classes</u> and denoted by [x].
- [2] The set of equivalence classes for X is called <u>quotient set</u> for X with the relation R and denoted by $X|R = \{[x] : x \in X\}$.
- [3] The mapping $p: X \to X/R$; p(x) = [x] is called **quotient mapping**.

<u>Definition</u>: Quotient Space

Let (X, τ) be a topological space and R be equivalence relation on X. Let $p: X \to X/R$; p(x) = [x] be surjective quotient mapping from X to X/R, then the quotient topology on X/R is the largest topology make the function f continuous and the space $(X/R, \tau_{X/R})$ is called **quotient space**.