Chapter Four 2025-2026 Separation Axioms

Chapter Four : Separation Axioms

Definition : To— Space

Let (X, t) be a topological space. Then the space (X, t)is called T, — space iff for
each pair of distinct points X, y € X, there is either an open set containing x but not y
or an open set containing y but not x. i.e.,

XisTo—space =< VXx,yeX ; xzy dUet ;(xeUaygU) v xXgUAayel).
If (X, 1) is not To— space, we define,

XisnotTo—space < dx,ye X ; xzy VUet ;(X,yelU) v(x,y¢gU).
The following figure show the definition of T,— Space :

X
« (0

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {1, 2}}. Is (X, 1), To— Space.
Solution : Must test every deference elements in X, satisfy the definition or not as
follows :

1#2=3Jopenset{1} et ;1e{1} A 2 ¢ {1}
1#3=3Jopenset{1} et ;1e{1} A 3¢ {1}
2#3=>3openset{l,2}er ;2€{1,2} A 3¢{1,2}
.. The definition is satisfy = (X, ) is To— space.

X @

Example : Let X ={a, b, c} and t = {X, ¢, {a}}. Is (X, 1), To— space.

Solution : No, since b = ¢ = 7 open set containing b but not ¢ or an open set
containing c but not b.

Clear that X containing b, ¢ and ¢ open set not containing b, ¢ and {a} open set not
containing b, c. Therefore, (X, 1) is not To— space.

Example : Is (N, ter) To— Space.
Solution : Yes, we prove that in general since N containing infinite numbers :

Letn,meN ;n=m,toprove FopensetU e ty,;meU A ng U orvice versa.
TakeU=N\{n} = meUA ngU
and U € 1 (since U= (N\ {n})° = {n} finite set by def. of 1)
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By similar way we can take : U=N\{m} = mg UA neU
and U e 1 (since U° = (N\ {m})° = {m} finite set by def. of 1)
The two cases similar and satisfy the definition = (N, 1) IS To— Space.

Example : In the space (X, I) if X is any set containing more than one element, then
(X, I) is not T, — space, since X contains more than one element we take X,y € X ; X
# Yy and A open set containing X but not y or an open set containing y but not x and ¢
open set not containing Xx, Y.

Example : The space (X, D) is To— space.

Solution : Letx,y € X ; x =Y, then {x} € D i.e., {x} open set (by definition D since
D =1P(X) ), hence x € {x} andy ¢ {x}. We can take {y} replace of {x} andy € {y}
and x ¢ {y}. Therefore, (X, D) is To— space.

Example : The usual topological space (R, t,) is To— space.
Solution : Letx,yeR ; x=#y €
Take U=(X—¢,X+¢€); e=|x-VY| XYy R

17
J

AT~

|
=>Uetq, A XxXeU A yegU U
s (R, 1) is T — space.

X

Theorem : Every metric space is To— space.
Proof : Let (X, d) be a metric space and X,y € X ; X #y
Letr=d(x, y); d(x, y) is the distinct between x and y Bi(x)

Take U = B,(X) ; U = B((x) is open ball with center x and radius r
L Uetg xeUayeg U,

14 1S @ topology on X induced by d (see page 33) y
- (X, d) is Ty — space.

Now, we introduce theorem gave an equivalent modules for definition T, — space.

Theorem : (X, t) is To—space iff {x} # {y} VX, ye X;x=Yy.

I.e., (X, 1) is T — space iff the closure of singleton sets is deference if the elements
are deference.

Proof : (=) Suppose that X is To— space, to prove {x}#{y} V X,ye X;x=y

w XisTo—space andxzy =>3Uet ;(xeUaygU)v(xgUAayel)
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Supposethat (xeUAy g U) = (XxeUAayeX-U)
X — U closed set since U open set = {y} c X-U
= {y} cX-U=X-U
(since X — U closed and X — U = X — U)
= {y} =« X-U A xeU
= {x}g& X-U
= {x} € X-U

By similar way if we take (x ¢ U Ay € U)

(<) suppose that {x} # {y} V x=ye X, toprove X is To— space

Suppose that X isnot To—space = (AXx,ye X; VUe1;xeU=yeU) (defof T,
— space) (i.e., every open set containing X its containing y)
letzeX ; ze{x} = mmmeemmeemeee (*)

= VUet;zeUAUN{X}I=0
(sincebytrue:zeA < VUert ;zeU A UNA=?)

But, UN{xX}#¢ = xeU (since the only element in {x} is X)
.. every set contains z must contains Xx. So, we have the following two statements :
every open set contains z must contains x and every open set contains X must contains
y.
.. every open set contains z must contains y.

=>VUet;zeUAUN{Y}#0d

=ze{y}  --mmememmeee- (*)

=>Vze{x} = ze{y} ={} c{y}
By similar way we prove {y} c {x}

{x}={y} C! contribution (since {x}#{y})
X is To— space.

Theorem : The property of being a Ty — space is a hereditary property.
Proof :
Let (X, 1) To— space and (W, ty) subspace of X, to prove (W, ty) is To— space

Let X,yeW;xzy = X,ye X (since W c X)
w XisTo—space = FUert ;(XxeUayegU) v xgUAayel)
= UNWetw (by def. of tyw)

XeUNWAyg UMW) vxgeUNWAyeUNW)
2 (W, tw) is To— space.
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Theorem : The property of being a T, — space is a topological property.
Proof :
Let (X, 1) = (Y, 1') and suppose that X is To— space, to prove Y is T,— space
(X )Y, T) = 3f: (X, 1) > (Y, 1) ; f1-1, fonto, f continuous, f* continuous
Let y, Yo€Y 5 yizY, = fi(yw), fi(y) e X
-+ f onto function = f(y) = ¢, F(y,) = d
+ f 1-1function = Ilxe X fly)=x; and I x, € X ; Fy) = %,
and X; # X, and X1, X, € X
v XisTg—space = 3dUert ;(x;eUAX g U)v (X, ¢ UAX,el)
-+ ftis cont. or fopen = f(U) € T ; (f(xy) € f(U) A f(x,) ¢ f(U))
v (T(xy) ¢ f(U) A f(xp) € f(U) )
. YIs To— space
By similar we prove, if Y is Ty— space, then X is To— space.

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY isa Ty —space iff each X and Y are T, — space.
Proof :
(=) Suppose that XxY is a To— space, to prove that X and Y are T,— space
LetX, XoeX ; Xg =X and Y, Yo €Y | Y1 # Yo
= (X, Y1), (X2, Y2) € XXY 5 (X1, Y1) # (X2, Y2)
- XxYisa To—space = Jabasic open set UxV € tx.y ;
(X1, Y1) € UXV A (X2, Y2) € UxV ) v (X1, Y1) € UXV A (X, Y2) € UxV)
=3JdUet ;(Xx;eUnxogU)v X g UAXx,elU) = XisaTy—space
and3aIVert ;y1eVAY,2V)v (Y12 VAY,eV)= YisaTy—space.
(<) Suppose that X and Y are To— space, to prove XxY is a To— space
Let (X1, Y1), (X2, ¥2) € XXY ; (X1, Y1) # (X2, ¥2)
By def. product space = (X;, Xo € X A X1 #X2) A (YL Y2€Y A Y1 #Y))
- XisaTg—space =>3FUet ;(XeUAxy g U)v (X, ¢ UAXx,el)
“YisaTo—space =>3IVet ;(y1eVAY, ¢V)v(yi g VAY,eV)
= 3 UxV is abasic open set ; ( (X1, Y1) € UXV A (X2, ¥2) € UxV)
Vv (X1, Y1) € UxXV A (X3, ¥2) € UxV)
. XxY isa Ty— space.
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Definition : T, — Space

Let (X, 1) be a topological space. Then the space (X, t)is called T, — space iff for

each pair of distinct points X, y € X, there exists an open set in X containing X but

not y, and an open set in X containing y but not x. i.e.,

XisTi—space =< VX, yeX;XxzyaU,Ver; XeUaye U A(XgVAyeV).

If (X, 1) is not T, — space, we define,

XisnotT;—space<= 3Ix,yeX;xzyvU,Ver
(xeUayeU)v(xeUAayegU)

xeVayeV)vxgVAayeV).
The following figure show the definition of T, - space :

X U

oy

Remark : Every T, — space is To— space (i.e., Ty = T). But the reverse implications
does not hold (i.e., Tg :ﬁ T, ) and the following example show that :

Example : Let (X, 1) be a topological space such that X = {1, 2, 3} and t = {X, ¢,
{1} {1 2}}.

Solution : Clear (X, 1) is To— space (see page 76).

But, (X, 1) is not T, — space, since 2 = 3 and 3 open set {1, 2} in X containing 2 but
not 3, but 7 open set in X containing 3 but not 2, since the only open set containing 3
Is X and X containing 2 too.

Remark : If (X, t) is T, — space, then its not necessary to test that the space is To—
space, since every T, — space is a To— space.

Example : The space (X, D) is T, — space.
Solution :

Letx,ye X;xzy=3{x}{y}eD;, xe{x}rye{XxHhrxe{y}rye{y}
= (X, D) is Ty — space.
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Example : Is (N, 1) T1— space ??
Solution : Yes,
Letn,meN ;n=m,take U=N\{m}, V=N\{n}
=U,Verty  (since U= (N\{m})° = {m} finite set by def. of 1)
(since V° = (N\ {n})° = {n} finite set by def. of 1)
> MmheU=N\{mM}amegU)AmegV=N\{n}A meV)
= (N, Teof) is T1— space.

Example : The usual topological space (R, 1) is a T, — space.

Solution :

Letx,yeR ;X#y,e=|X-VY]| U

Take U=(X—-g,Xx+¢),V=(y—g,y+g) ( Xie Y R

U Ver ;xeUaygU)AXgVAayeV).
- (R, 1) is T — space.

Theorem : Every metric space is a T, — space.

Proof : Let (X, d) be a metric space and X,y € X ;X =y X
Take U=B/(X), V=B(y) ; r=d(x,Yy) B:(X)

U Ver;xeUaygU)AaXgVAayeV)
s (X, d) is T, — space.

Theorem : (X, 1) is T, — space iff {x} is closed V x € X.
I.e., (X, 1) is T, — space iff every singleton set in X is closed.
Proof : (=) Suppose that X is T, — space, to prove {x} closed V x € X
I.e., X — {x} open set, we must prove X — {x} contains a nbhd v y e X — {x}
Letye X—{Xx} = x=Vy
w XisTy—space = FU,Vyet; (XeUAayegU)Aa(Xe VyaryeV,)
=>YyeVy, A XegV,
= D3N Vy =0
= Vyc X-{X} AyeV,
= Vyc X-{x} VyeX-{x}
- X—={x} contains a nbhd V y € X — {x}.
o X—{x} open set = {x} closed V x e X.
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(<) suppose that {x} closed V x € X, to prove X is T;— space
Letx,ye X; xzy = {x}, {y} are closed sets

= X —{x}, X—{y} are open sets
SayU=X-{y},V=X-{x} = xeUayegU)A(XxgVAyeV)
- (X, 1) is T, — space.

Corollary : If X is a T, — space, then every finite set is closed.
Proof : Let A be a finite set in X
= A={Xy, ... . xn} = UL {x;}
(X, 1)isTy—space = {Xi}e¥F Vi
= UjL,{x;} closed
— Alsaclosed

Corollary : If X is finite set and (X, t) is a T, — space, then t = D.

Proof : To prove t=D must we prove (V x € X = {x} € 1), i.e., every singleton
set {x} is open.

Letx e X

o X finiteset = X —{x} finite set

. XisTy—space = X —{x} closed set

(by previous corollary : If X is T;— space, then every finite set is closed)
= {x} open
. t=D.

Remark : From the previous corollary the only topology that make the space (X, 1)
Is Ty — space when X is finite set is D. For example if X = {1, 2, 3} and we know
there is 29 deference topology on X (see page 2) so that there is 28 topology on X is
not T, — space except one topology is D. Therefore, we not try to give an example for
space is T;— space on finite set and the topology not D.

Now, we introduce some corollaries on the theorem in page 81 and your proves
is directed from theorem.

Corollary (1) : (X, 1) is T, —space iff {x} = {x} V xe X.

Corollary (2) : (X, 1) is Ty —space iff {x} =({F;Fe ¥ A xeF} VxeX
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Corollary (3) : (X, 1) is T, —space iff {x}" = ¢ V x € X.

Corollary (4) : (X, 1) is T, — space iff {x}" = {x} V xe X.

Corollary (5) : (X, 1) is T, — space iff {x} c {x} V xeX.

Corollary (6) : (X, 1) is T, — space iff {x} = ¢ V¥ x e X.

Theorem : The property of being a T, — space is a hereditary property.
Proof :

Let (X, 1) T,—space and (W, ty) subspace of X, to prove (W, tw) T1— Space

Letx,yeW ; Xy = X, yeX (since W c X)
o Xis Ty—space = FU,Vert;xeUanygU)A(XxegV AayeV).
= UNWA VN Wery (by def. Ty )

= XeUNWAYygUMMWIAXegVOAWAYeVNW).
- (W, 1w) isa T,— space.

Theorem : The property of being a T, — space is a topological property.
Proof :

Let (X, 1) = (Y, ') and X is a T;— space, to prove Y is a T, — space

(X )Y, 7)) = 3f: (X 1) > (Y, 1) ; f1-1, fonto, f continuous, f* continuous
Let yi,Yo€Y 5 yizY, = Fiy), Fi(y.) e X

-+ f onto function = f(y1) = ¢, F1(y2) =

s f 1-1function = JlxeX;fly)=x, and A x, € X ; F(y) =X,

and X; # X, and Xg, Xo € X
s XisTy—space = 3U, Vet ;(x1eUnxagU)AXr gV AXeV)
-+ fis cont. or f open = f(U), f(V) e T ; (f(x1) € f(U) A f(x2) & f(U))
A (T(x) 2 £(V) Af(x) € £(V) )

- Yis T{— space

By similar way we prove, if Y is T, — space, then X is T, — space.
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Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY isa T, —space iff each X and Y are T, — space.
Proof :
(<) Suppose that X and Y are T, — space, to prove XxY isa T,— space
Let (X1, Y1), (X2, Y2) € XXY 5 (X1, Y1) # (X2, ¥2)
By def. product space = (X;, Xo € X A X1 #X2) A (YL Y2€Y A Y1#Y))
- XisaT;—space = 3U,Uyet ;(XzeUiaXy g U) A X g Uy AXyeUy)
“YisaT;—space =3IV, Vet ;(YieViaYg V)AL & VanrY, € Vo)
= 3 basic open sets U;xVy, U,xV,
(X1, Y1) € UixV1 A (X2, Y2) & UixV1) A (X1, Y1) € UaxVa A (Xz, Y2) € UpxV3)
- XxYisa T,— space.
(=) Suppose that XxY is a T,— space, to prove X and Y are T, — space
LetX, XoeX ; Xg =X and Y, Yo €Y | Y1 #Yo
= (X1, Y1), (X2, Y2) € XXY ; (Xg, Y1) # (X2, Y2)
wXxYisaTi—space =3 U,V €ty ; (X, Y1) € UA (X, Vo) € UA (X, ¥2) € VA
(X1, Y1) ¢ V that is mean 3 basic open sets U;xV1, Uo,xV5 € Ty, |
((Xq, Y1) € UixV1 A (X2, ¥2) € UixV1) A (X1, Y1) € UaxVo A (X, V2) € UpxV,)
=AU, Uet ; (Xx1eUiaXo g U)A(Xy € Uy AaX,eU,) = XisaT,—space
and 3V, Voet ;(YieViaY, g Vi)A (Y1 € VoaY,€V,) = YisaT;—space.
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Definition : T,— Space or Hausdorff Space

Let (X, t) be a topological space. Then the space (X, t) is called a T, — space or

Hausdorff space iff for each pair of distinct points X,y € X, there exist open sets U

and Vsuchthatx e U,y € V,and UV =¢. i.e,,
XisT,—space =< VXx,yeX;xzyaU,Ver; xeUayeV),UNV=0

If (X, 1) is not T,— space, we define,

XisnotT,space @ dxX,yeX;xzyvU Ver;,UNV=09,(X,yeUvXxyeV)

The following figure show the definition of T,— space :

e

Remark : Every T,— space is T, — space (i.e., T, = T;). But the reverse implications
do not hold (i.e., T, qé T, ) and the following example show that :

Example : Take cofinite topology (N, Tcof).

Solution : Clear (N, ter) is T;— space (see page 81).

But, (N, 1) IS not T, — space, since if n=m, take U=N\{m}, V=N\{n}, but U
NV # ¢. Therefore, T, 3 To.

Remark : If (X, 1) is T, — space, then not necessary test that the space is T, — space
and T,— space, since every T,— space is T, — space and every T, — space is To— space
i.e., (T2 = Tl = To)

Example : In the space (X, I) if X is any set containing more than one element, then
(X, 1) is not T, — space (see page 77), so that it's not T, — space and not T,— space.

Example : The space (X, D) is T,— space.
Solution :

Letx,ye X ;xzy={x} {y}eD; {Xx}N{y}=9¢,xe{x} rye{y})
= (X, D) is T,— space.
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Example : The usual topological space (R, t,) is T,— space.
Solution : Letx,yeR ;x¢y,s=%|x—y|

€
Take U=(X—-¢,Xx+¢),V=(Y—¢g,y+¢g) ¢ Xﬁ( —) R
U Ver;UNV=0,XeUAnyeV) U Vv

= (R, 1) is T,— space.

Remark : In the previous remark (p. 82) we show that if X is finite set and t # D,
then (X, t) is not T, — space and we say her is not T, — Space. i.e., the only topology
make (X, t) is T,— space if X is finite set is D.

Theorem : Every metric space is T,— space.
Proof : Let (X, d) be ametricspaceand X,y e X ;X =Yy

U
Take U=B,(x), V=B/(y) ; r=— d(x,y)

\Y/
U Very; UNV=¢,(xeUryeV) @@

- (X, d)is T, — space.

Theorem : (X, 1) is a T, — space iff the diagonal A = {(x, X) € XxX ; x € X} is a
closed subset of the product XxX.
Proof : (=) Suppose that X is T,— space, to prove A closed in XxX
I.e., XxX — A open set, we must prove XxX — A contains a nbhd V (X, y) € XxX - A
Let (X,y) e XxX-A = (X,y) ¢ A (def. of deference)
= X#Y (since A has equal coordinate)
wXisaT,—space = dU,Ver;UNV=0¢0,XeUAnyeV)
= UxV € Bx.x € txxx (by def. product space)
= UxV open setin XxX and
UxV < XxX—-A A (X,Y) € UxV (sinceUNV =9¢)
Since, iIf UXVE XxX-A= I (X,X) e A =>xeUAa xeV C!l (contridition)
o XxX —Acontainsanbhd vV x e XxX —A
= XxX — A € Txxx
= Aclosed in XxX
(<) Suppose that A closed in XxX, to prove X is T,— space
Letx,ye X;xzy = (X,y) ¢ A (by def. of A)
= (X,y) e A°=XxX - A
- A closed set = XxX — A open set
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=3I UxV ;U,Vetan(X,y) e UxV,UxVc XxX-A, xelU,yeV
=>UxVNA=6 (i.e., A element in UxV has equal coordinate)
=>UNV=9¢

- (X, 1) is T,— space.

Theorem : The property of being a T, — space is a hereditary property.
Proof :

Let (X, 1) T,—space and (W, tw) subspace of X, to prove (W, tw) T,— space

Letx,yeW;xzy =X, yeX (since W c X)
o Xis Ty—space = AU, Vet;UNV=0¢,XeUAayeV).
= UNWA VNWEe 1y, (by def. of 1)

unwnunw=UNAV)NW=¢NW=4¢
and xeUNWAyeVNOW).
o (W, tw) is T,—space.

Theorem : The property of being a T, — space is a topological property.
Proof :
Let (X, 7) = (Y, t') and suppose that Y is T,— space, to prove X is T,— space
(X 1) (Y, 1) =3 (X 1) > (Y, 1) ; f1-1, fonto, f continuous, ™ continuous
Let X, X, € X ; X1 #X, = f(X), f(Xp)eY
.+ f onto function = f(Xy) = d, T(y2) =0
 fl-lfunction =3ly,eY ;f(X)=y, and3A'y,eY ;f(X) =Yy,
andy; #Y, , Yy, Y. €Y
v YisT,—space =3IV, Vet Vi Vo=0,1eViAaYy,e V)
-+ f is continuous = f (V) = Uy, f (Vo) = Uy et ;
Ui U = F5 (V) N (VL) = FH (VN Vo) = £7(0) = ¢,
(xpe Ui A X e Uy)
. Xis T,— space
By similar way we prove, if X is T,— space, then Y is T,— space.
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Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY isa T, —space iff each X and Y are T, — space.
Proof :
(<) Suppose that X and Y are T,— space, to prove XxY is T,— space
Let (X1, Y1), (X2, Y2) € XXY 5 (X1, Y1) # (X2, ¥2)
By def. product space = (X;, Xo € X A X1 #X2) A (YL Y2€Y A Y1#Y))

- XisaTy—space =3I U, Uyet ;UiNU=d,X€ Ui A XpeUy)

" YisaT,—space =3IV, Vet ;ViVo=0,Y1eViA V€V

= 3 basic open sets U;xVy, U,xV, ;
(UixV1) N (UaxV2) = (U N U2) x (Vi V) =0 x 0=,
(X1, ¥1) € UixV1i A (X2, Y2) € UaxV3)
- XxYisa T,— space.
(=) Suppose that XxY is a T,— space, to prove X and Y are T,— space
LetX, XoeX ; Xg =X and Y, Yo €Y | Y1 #Yo
= (X1, Y1), (X2, ¥2) € XXY (X1, Y1) # (X2, Y2)
XxYisT,—space = 33U,V € Tyy ; (X, Y1) e UA (X2, ¥2) e VAUNV =06,
that is mean 3 basic open sets U;xV1, UoxV; € Ty ;U1xVy, UoxVs € Ty |
(UixV1) N (UaxV3) = ¢, ( (X1, Y1) € UixV1 A (X2, Vo) € UxxV,)
=3U;,Uet ;UiNU,=¢,(xeU;AX,€U,) = XisaT,—space
and 3V, Vet ;ViNVo=0,(Yy1eViAY,eV,) = YisaT,—space.
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Remark : We study in mathematical analysis real sequences and their convergence
and we know if the real sequences is convergence, then has a unigue limit and this is
especial case since their domain is real numbers with usual topology (R, t,). But, if
we go to the topological spaces in general and define the convergence sequences in
topological space we found the sequences is convergence but their limit not unigue.
In mathematical analysis (3" stage) we use the usual topology only and this T, —
space and we will introduce illustrate to this problem with definitions and theorems.

Definition : Let (X, d) be a metric space. We called the function S: N — Xisa
sequences in X and denoted to image of element n in N which is S(n) by S, , so that
the sequence is Sy, Sy, ..., Sp, ... ;neN or (Spnen -
We called the sequence is convergence to element X, in X (denoted by S, — Xo) if
the following condition satisfy :

Ve>0 dkeNstn>k; S,e N(xp)
such that N.(Xo) is open ball in X with center X, and radius ¢.
this means that the sequences (S,) convergence to limit xq in X if every open ball with
center X, contains all elements of sequences except finite numbers of elements.

Notes that the definition especial of metric space, so we now generalization
this definition to topological space such that we replaces open ball by open set since
the open ball no exist in topological space because there is not distant.

Definition : Let (Sy)ney be @ sequences in topological space (X, 1) (i.e., S: N— X).
We called the sequence (S,)nen IS CONvergence to Xq in X (denoted by S, — Xo) if
the following condition satisfy :

Ss—/ Xy < VUet ; xpeU FkeN;S,eU vn=k
I.e., every open nbhd of X, contains all elements of sequences except finite numbers.

Remark : If (X, 1) is not T, — space, then the convergence sequences may be has
more than one limit point.

Example : Let X = {1, 2, 3} and t = | = {X, ¢} such that (X, 1) is topological space.
Let (Sh)nen be @ sequences in X such that S, = 1 for all n

Solution : Clear S, — 1,S,— 2,and S, — 3 ??

To clear that apply the definition ; S, — 1, since the open nbhds of 1 is X only
because it’s the unique open set contains 1 and S, — 1 since X contains all
elements so its contain the sequence. Therefore the definition satisfy.
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By similar way S, — 2 and S, — 3 since X the unique open set that contains 2 and
also contains 3 and X contains the sequences too.

Question : Give an example to convergence sequence in topological space has five
deference limit points.
Answer : Let X ={1, 2, 3,4,5,6} and T = {X, ¢, {6}} such that (X, 1) is topological
space.
Define (Sy)ney as follows S, =3 V n e N, so that

Sis— 1,5, —2,S5,—3,S,—4,S,—5,butS, /A6
Since {6} is open nbhd for 6 , but S, ¢ {6} V n e N, because S, =3 and 3 ¢ {6}.
On the other hand, S, — 1, 2, 3, 4, 5 since X the unique open set that contains 1, 2,
3,4,5and X contains 3i.e.,,S, e XVneN.

We can change the previous question to make give an example to convergence
sequence has ten or seven or any known number deference limit point. By taken X
has 11 element (if require 10 deference limit point) and define topology on X
contains X, ¢, and singleton set contain one of the elements of X and define constant
sequence such that the constant number is one number of elements of X not in
singleton set. Therefore, we have the require.

Question : Give an example to convergence sequence in topological space has
infinite number of deference limit point.
Answer : Let X = R (or X = any infinite set) and take t = | = {X, ¢} and take any
sequence in R for example :
S, = {\/i if nekE
0 if neo
Notes that the sequence (Sy)nen 1S NOt convergence in (R, t,).

But in (R, I) is convergence and has infinite numbers of limit points, since every real

number is limit point because R the unique open set and R contains v2 and 0 and R
contains all elements of the sequences (i.e., every open nbhd for all element in R

contains all elements of the sequences) and this means in the definition of
convergence in metric space that for all real number is limit point of the sequence

(Sn)neN-

Remark : If (X, 1) is T, — space, then every convergence sequence in X has unique
limit point and this illustrate that consider the limit point if exist, then its unique in
mathematical analysis (3" stage), because we study the metric space only and special
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case (R, | |) and we prove that every metric space is T, — space (see page 86), so that

every convergence sequence in metric space has unique limit point and we will
introduce the theorem show this :

Theorem : If (X, 1) is T, — space, then every convergence sequence in X has unique
limit point.
Proof : Let (S,)nen be convergence sequences in X
Suppose thatS,— x and S, — Yy ;xzyeX
- Xis Ty—space = 3U,Vet;UNV=0,XeUAnyeV).
v Sy—XxandxelUet = Fk;eN;S,eU Vn=>k;
v Sp—yandyeVetr = Ik, eN;5,eV Vnxk,
. elements of sequence is infinite (since domain = N), then there are elements
common between U and V (i.e., UV = ¢). CI! contradiction
.. every convergence sequence in X has unique limit point.

We will use idea of convergence sequence in topological space and idea axiom
of T,— space with important continuous concept in topology :

Theorem : If f: (X, 1) — (Y, ') is continuous function and (S,).n IS CONvergence
sequence in X such that S, — x, then f(S,)) — f(x).
I.e., The continuous function maps convergence sequence in domain to convergence
sequence in codomain and their limit point is image of limit point in domain.
Proof : To prove f(S,) — f(X) in Y
Let V be an open nbhd of f(x) in Y, i.e., f(X) eV e
-+ f continuous = (V) e 1, i.e., f (V) open set in X
f(x) eV — x efH(V)
— (V) be an open nbhd of x in X
v Sy—xandxefi(V)etr = IkeN;S,ef (V) Vnxk
Take image for S, and for f *(V), we have
= FkeN;f(S)eV Vnxk
i.e., V contains all elements of sequence except k of these element.
- (S, — f(x).

Now, we prove one of the important theorem which connected between the
concept axiom T,— space and concept compactness.
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Theorem : Every compact set in T,— space is closed.
Proof : Let (X, t) be T, —space and A — X ; A compact in X
To prove Ais closed in X, i.e., X — A open set in X
we must prove X — A contains an open nbhd Vv xe X-A
(le, vxeX-AdUet;xeUcX-A)
Letxe X-A=>xegA=x#aVvVacA
- Xis Ty—space = U, Vaet; U, NVa=0,XeU;naeVa) VacA
We have two family of open sets are {U,}aca (every element in this family contains x)
and {V.}aca (every element in this family contains one of the elements A) and every
U, corresponding V, such that U, (] V. = ¢.
= {V.}aca Open cover of A, i.e., A < Uaea Va
" Aliscompactset =3 a,...,a, ;AcUiL, V,,
Therefore, there is a finite family {U,}.ca corresponding the finite family {V, }iL,
which is {U, }iL;.
.+ every U, contain x, then x € NiL; Uy,
- every U, is open set, then N, U, is open set contain x
(second condition of def of top.)
Say, U=NiL; U, =>xelUen

On the other hand Ui, V,, is open set (third condition of def. of top.)
Say,V=UiL; Vo, =>AcVer
Notes that,
UNV=2¢6 (since U; M Va=9)
=>ANU=¢ (sinceAcVandU NV =9¢)
>UcX-A

=>xXxeUcX-AAUer
= X-A opensetin X VxeX-A
— A closed set in X.

Finally, we introduce one of important theorem which connected the concepts
continuous, T,— space, and compactness with homomorphism concept.

Theorem : If f: (X, 1) — (Y, 1) is continuous bijective function and X is compact
space and Y is T,— space, the f is homomorphism.

Proof : It is enough to prove f is closed function

Let F be a closed set in X
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"~ X'is compact and F closed in X = F compact in X
(by theorem : A closed subset of compact space is compact)
- fis continuous and F is compact in X = f(F) is compact in Y
(by theorem : A continuous image of compact set is compact set)
.~ Y is T, —space and f(F) compact in Y = f(F) is closed in Y
(by previous theorem : Every compact set in T,— space is closed)
.. Tis closed function = f is Homeomorphism.

In chapter three (compact space) we say the intersection of two compact sets
not necessary compact set (see page 68) and intersection closed set and compact sets
not necessary compact set, but this statements are satisfy if we add the condition that
T,— space and the following theorems show this.

Theorem : If Ais closed set and B is compact set in T,— space (X, 1), then A( B is
compact.
Proof :
.+ Xis T, — space and B compact in X = B is closed in X

(by theorem : Every compact set in T,— space is closed)
- Aand B closed sets = A B closed seti.e., A(1Be &

(second condition of def of top.)

AN BcBie., A B subspace of B and

A Bclosed in Band B compact = A[) B compact
(by theorem : A closed subset of compact space is compact)

Corollary : If A and B are compact sets in T,— space (X, t), then A () B is compact.
Proof :
.+ Xis T, —space and A compact in X = A'is closed in X
(by theorem : Every compact set in T,— space is closed)
.+ X'is T, —space and A closed and B compact in X = A () B compact
(by previous theorem)
Remark : If X 'is T,— space and compact, then X o A closed << A compact.
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Definition : Regular Space

Let (X, t) be a topological space. Then the space (X, 7) is called a Reqular Space iff
for each closed set F — X and each point X ¢ F, there exist open sets U and V such
thatx € U,Fc V,and U )V = ¢ (denoted by R— space). i.e.,
XisR-space o VxeXVFeF;xegF3aUVer;UNV=¢,xXecUAFcCV)
If (X, 7) is not R— space, we define,

XisnotR-space < dxeX3iFeF ;xgFAVUVer;UNV=9¢,
xeUAFcU)v(xeVAFcCV)v
xXeUAFZV)v(XgVAFZV).

The following figure show the definition of R — space :
X

OO

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {2}, {1, 2}}. Is (X, 1) R — space.
Solution : First, find the family of closed sets :
F={X, ¢, {2, 3}, {1, 3}, {3}}
Second, take every closed set and every element not belong to it as follow :
Take X, but every element belong to X
Takepand 1,2,3¢p=>3FJU=XandV=¢suchthatl, 2,3 e X=Uandpc =V
and X [ ¢ = ¢, so the definition satisfy.
Take F={2, 3} and 1 ¢ F = the only open set that contains F is X, but X (YU = ¢
, S0 the definition not satisfy. .. (X, 1) is not R — space.

Example : Let X ={1, 2, 3} and t = {X, ¢, {1}, {2, 3}}. Is (X, t) R — space.
Solution : First, find the family of closed sets :

F={X¢,{2,3}, {1}} =1
and X, ¢ in previous example satisfy the definition (in general X, ¢ satisfy the
definition in every example).
Take F={1}closedset;2,3 ¢ F=3U={2,3}andV={1}=F;U,Ver

= UNV=¢,;23cUAFcV (the definition satisfy)
Take F={2,3}closedset;1 ¢ F=3U={1}andV={2,3}=F;U,Ver
= UNV=¢;1eU A FcV (the definition satisfy)

- (X, 1) is R —space.
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Remark : In previous example notes that X is not T, — space, not T, — space, and not
T,—space, so the R —space is not necessarily To—space or T, —space or T,— space. i.e.,

RH#To AR$H T ARPHT)

Remark : If T = % in any topological space (X, 1), then its R — space, since :
If Fclosedsetin Xandx ¢ F=>3U=FandV=F ;FcF=UxeV=F FNF

= ¢. So the definition of R — space satisfy.
From this remark we have (X, 1) and (X, D) are R — space.

Example : Is cofinite topology (N, t.f) R — space.
Solution : No. Since A two nonempty disjoint open sets satisfy the definition satisfy
of R — space, for example :
If X= Nand F={1, 2, 3}and x =4, then x ¢ F and if we assume there exists U, V
€ Tofand UV = ¢, then
UNOV)=¢" = uyv=X

finite finite finite C!l' contradiction

Theorem : The space (X, 1) is regular (R — space) iff for each x € X and each open
set W containing X, there exists an open set U suchthat x e U c U c W.
Proof : (=) Suppose that X is R — space.

Letxe X, Wet; xXeW =xgX-Wand X-WeF
wXiIsSR-space=3U,Vet;UNV=0¢,XeUAX-WcV)

"UNV=9 = UcX-V
We have, Uc X-V and X-VcW

= Uc X—-V (sinceAcB = AcB)

= UcX-V (since X =V closed = X -V =X-YV)
= UcX-V A X-VcW

= UcW

—=xeUcUcW (since Ac A)

(«<=) Suppose the condition of theorem satisfy, to prove X is R — space
Let xe Xand F closed setin X ; x ¢ F

=>XeX-Fer (since F closed)
=3JUert;xeUcUcX-F (byhypothesis)
= UcX-F

= FcX-U (sinceAcB < B°c A
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But, X — U open since U closed, say X - U =V
=>XeUAFcSVAUNV=¢ GinceUcUandUNOX-U=¢=>UNV=0)
. Xis R —space.

Theorem : Every metric space is R — space.
Proof : Let (X, d) be a metric space = (X, t4) the topology derivative from this
metric. We will prove this theorem by using previous theorem :
Let x e X and W open set ; x e W
Toprove 3U openset; xeUcUcW or xeUcCI(U)cW
"~ X € W = 3 open ball of x contains in W (since W € 1y)
=3IpeR” ; NX p)cW
(since the set is open < contains open nbhd for every element)
TakeqeR"™ ; 0<qg<p = N(X q) = N(X, p)
(since the first half ball similar than second half ball and the center is unique)
= N(x, q) = CI(N(x, 9)) = N(x, p) (since g <p)
since N(x, ) ={y € X; d(x,y) <qg}and CI(N(x, q)) ={y € X ; d(x,y) <q}
= N(x, @) < CI(N(x, q)) c W  (since N(x, p) = W and CI(N(x, q) = N(x, p))
. every open ball in metric space is open set = N(X, q) open set, say U = N(X, q)
=xeUcCIU)cW
- (X, d)is R —space.

Remark : There is a method to prove previous theorem by using definition of R —
space, but this prove is shorter.

Remark : Since (R, t,) is metric space, then (R, ) is R — space.

Theorem : The property of being a R — space is a hereditary property.
Proof : Let (X, t) R —space and (W, tw) subspace of X, to prove (W, tw) R — space
Letx e W and E closed setinW ; x ¢ E
= xeX (since WcX) AdFe?d ; E=FNW (i.e., F closed in X)
- Xis R—space =3U,Vet;UNV=0,XecUAFcV)

= UNW A VOWeny, (by def of Ty )
unwnNnvaw=UNV)AW=¢NW=9¢
and xeUNW (sincexeU A xeW)

A EcVAW). SinceE=F(W=EcF AEcCW
= EcVAECW
= EcVNW

o (W, tw) IS R —space.
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Theorem : The property of being a R — space is a topological property.
Proof : Let (X, 1) = (Y, t') and suppose that X is R — space, to prove Y is R — space
XK t)z(Y,t) =3 (X 1) > (Y, 1); f1-1, fonto, f continuous, f open
Let yeY andFe ¥ 'ie,FclosedinY ; yeF
.~ fonto function = 3Ixe X ;f(X)=y
-+ fcontinuous = f*(F) € Fi.e., f'(F) closed in X ; x & f(F) (since f(x) =y ¢ F)
* XisR—space =3U,Vet:UNV=¢,xcUafF)cV)
. f open = f(U), f(V) e
-+ fis1-1 Aonto = f(x) € f(U) A f(f'(F) < f(V)
= yef(U) A Fcf(V) (sincey=f(x) A f(f'(F))=F)
SUNV=¢e = fUNFV)=FUNV)=1(¢)=¢
. XIS R — space.
By similar way we prove, if Y is R — space, then X is R — space.

Remark : The continuous image of R — space is not necessarily R — space. i.e., if f:
(X, 1) = (Y, 1) is continuous onto function and X is R — space, then Y not
necessarily R — space and the following example show this :

Example : Letf: (R,D) > (R, tef) ; f(X)=%x VxeR.

f is continuous function since the domain (R, D) is discrete topology (see page 37)
and clear f is onto and in general (X, D) is R — space (i.e., (R, D) is R — space), but in
general (X, 1) IS NOt R — space (see page 95) (i.e., (R, tf) IS NOt R — space).

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY is a R —space iff each X and Y are R — space.
Proof : (<) Suppose that X and Y are R — space, to prove XxY is R — space
Let (x,y) e XxY and A closed setin XxY ; (X,y) ¢ A
= 3 F closed set in X and F' closed set in Y ; FxF' < A and (X, y) ¢ FxF'
=>XgkFeF A yeFe¥
- XisaR-space =3dU, Vet ;UNV=¢,XcUA FCV)
“YisaR-space =3U Vet ;UNV'=0¢,(yeU A FcV)
=
UxY, VXY € txy ; (UXY) N (VXY)=(UNV)xY=doxY=¢,
((X,y) e UxY A FxF' cVxY)
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Or
XxU', XxV' € Ty 3 (XKUY N (XxV)=Xx (U NV)=Xxd=9,
((X,y) e XxU' A FxF' < XxV")
In both cases we have XxY is R — space.
(=) Suppose that XxY is R — space, to prove X and Y are R — space
LetxeX andFe#; x¢gF and yeY andFe¥"; yg F
= (X,¥) € XxY and FxF' € Fx.v; (X, y) ¢ FxF'
 XxY isaR —space = I UxV, UxV' e tx.v ; (UxV) N (U'xV) = ¢,
((X,y) e UxV A FxF' < FxF")
=3JdU,Uet;UNU=¢,xeUAFcU) = XisR-space
and 3V, V'et ;VOAV'=0,(yeVAF V) = YisR-space.

Remark : Notesthat: (ToAR A T:AR A T.AR)

Example : Let X = {1, 2, 3} and © = {X, ¢, {1}, {2}, {1, 2}} ; (X, 1) topological
space.

Solution : Clear (X, 7) is not R — space (see page 94)
On the other hand, (X, 1) is To— space (Check that !1)
So, we have T,— space, but not R — space.

Example : Take cofinite topology (N, T).

Solution : Clear (N, 1) not R — space (see page 95).
On the other hand, (N, tef) IS T1— space (see page 81).
So, we have T, — space, but not R — space.

Definition : T;— Space
Let (X, 1) be a topological space. Then the space (X, 1) is called a T; — Space iff its
regular and T; — space. i.e.,

T3 —space = T, — space + R — space

Example : The space (X, D) is Ts;— space, since its T, — space and R — space.

Example : The space (X, 1) ; X contains more than one element is not T; — space,
since its not T, — space and R — space.
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Example : In the cofinite topology (X, 1), If X is infinite set, then its not T; —
space, since its T, — space and not R — space.

Example : Let X = {1, 2, 3} and t = {X, ¢, {1}, {2, 3}}. The space (X, 1) is hot T5—
space, since its not T, — space and R — space.

Example : The usual topological space (R, t,) is T;— space, since its T, — space and
R — space.

Theorem : Every metric space is Tz — space.
Proof : Since every metric space is T;— space and R — space.

Theorem : The property of being a T; — space is a hereditary property.
Proof : Since the property T, — space and R — space are a hereditary property.
Then T3 — space is a hereditary property.

Theorem : The property of being a T; — space is a topological property.
Proof : Since the property T, — space and R — space are a topological property.
Then T; — space is a topological property.

Theorem : Let (X, 1) and (Y, t') be two topological spaces. Then the product space
XxY is a T; —space iff each X and Y are T; — space.

Proof : We prove in previous theorems : That the product space XxY is T, — space
and R —space iff each X and Y is T, —space (see page 84) and R —space (see page 97).
Hence, we have the product space XxY is a Tz — space iff each X and Y are T; —
space.

Remark : The continuous image of T — space is not necessarily T; — space. i.e., if f
- (X, 1) > (Y, t') is continuous onto function and X is T3 — space, then Y not
necessarily T; — space and the following example show this :

Example : Letf: (R,D) > (R, 1) ; f(x)=x VxeR.

f is continuous function since the domain (R, D) is discrete topology (see page 37)
and clear f is onto and in general (X, D) is Ts — space (i.e., (R, D) is T; — space), but
(X, 1) is not T3 — space (see page 98).
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Theorem : If (X, 1) isa T; —space, then X is a T, — space.

Proof : Suppose that X is a Tz — space (i.e., ,T; — space and R — space), to prove X is

T,— space.

Letx,ye X; xzy

. Xis Ty—space = {x}, {y} € # (by theorem, X is T;-space < {x} closed V x € X)
= X ¢ {y} (since X #y)

w XiISR—-space=3U, Vet ;UNV=0¢,xecU A {y}cV)
= XeU A yeV

- (X, t)isaT,— space.

In previous theorem we take x ¢ {y} and by the similar way we can take y ¢
{x} and we have the same result.

Remark : From above theorem we have :
T3—space = T,—space = T;—space = T,— space

y: ¢ i

Remark : There is another method to express on the above theorem as follows :
If (X, 1) is R — space and every singleton set in X is closed, then X is T, — space.

Example : Let X=Nandt={U c X ;1 U} {¢}. Is (N, t) T3 —space ??
Solution : We test (N, 1) is T, —space ?? and R — space ??

Letx,yeN ; x =Y, to find open set containing X but not y, and open set containing y
but not x.

Suppose x = 1, then for any y € N such that x = y there is no open set contains y but

not x (since definition t is every open set must contains 1 if it's not empty set), so X
not T, — space. Furthermore, X is not R — space.
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Definition : Normal Space
Let (X, t) be a topological space. Then the space (X, t) is called a Normal Space
(denoted by N — space) iff for each pair of closed disjoint subsets F and E of X, there
exist open sets U and V suchthat Fc U, EcV,and UV = ¢. i.e,,
XisN-Space @ VF,Ee¥;F(NE=¢ 3U,Ver;UNV=0,(FCUAECV)
If (X, 7) is not N — space, we define,
XisnotN-Space<3IF,Eec¥ ;FNE=¢ VU Ver;UNV=9¢,

FE UAEZ V)V(FEVAEZU).
The following figure show the definition of N - space :

X

Example : Let X = {1, 2, 3} and t = {X, ¢, {1}, {2}, {1, 2}}. Is (X, t) N — space.
Solution : First, find the family of closed sets :
F={X,¢.{2,3}, {1, 3}, {3}}

Second, take every two closed sets there intersection is empty :
Notes that any two closed sets their intersection is nonempty, since all closed sets
contains 3 except ¢. Therefore, the definition of N — space is satisfy.
We can prove this as follows :
[VF,EeF;FNE=¢] = [IU,Vet; UNV=6¢,(FcUAEcCV)]

False statement either false statement or true statement
In two cases we have (F = F=T) and (F = T =T), therefore the definition of N —
space is satisfy.

Remark : In the previous example notes that (X, t) is not R — space and its N — space
so that :
( N —space £& R — space)
Also, in this example (X, 1) is not T, — space and not T, — space so that :
(N —space 75 T; — space) A ( N —space 7 T, — space)
Furthermore,
(R —space & N —space) A ( T, —space & N —space) A ( T, —space 75 N — space)

Remark : ( To— space 74 N — space) A ( N — space 4 T, — space)
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Example : The space (N, tef) IS To — space and not N — space, since there is two
nonempty disjoint closed sets, but there is no two nonempty disjoint open sets.
Notes that too (N, tef) IS T — space and not N — space.

Example : The space (R, 1) is not Ty — space, since R is the only open set contains
elements and its contains all elements. But (R, 1) is N — space since the closed sets are
F=Rand E=¢only,and R (] & = ¢ and the open sets are R and ¢ and R < R and ¢

c 0.

Example : The space (X, D) is N — space, since every sets her is open and closed
then: If F,E€% ;F(NE=¢,thenF,Ect; (FcFAECE).

Remark : If (X, 1) is topological space and t = # (i.e., every closed set is open) or
Uet < Ue ¥, then (X, 1)is N - space.

The spaces (X, I) and (X, D) is special case from this spaces.

We can use this remark to have infinite numbers of N — space simply by take any set
X and make topology t on X as follows : t ={X, ¢, A, A} ; Ac X.

Example : Let X = {1, 2, 3} and t = {X, ¢, {1}}. Show that (X, t) is N — space.
Solution : First, find the family of closed sets :
F={X ¢,{2,3}}

Second, take every two closed sets there intersection is empty as follows :
Take, ), XeF ;¢ X=0 = IU=0AV=Xet;UNV=9¢,(bcUAXV)
Take, ¢, {2,3}F ;6 N{2,3}=¢ = IU=pAV=Xet;UNV=9¢,

(bcUn{2,3}cV)
- (X, 1) is N — space.
Notes that this space not T, — space, not T, — space, not T, — space, not R — space, and
not Tz — space.

Remark : The continuous image of N — space is not necessarily N — space. i.e., if f:

(X, 1) > (Y, 1) is continuous onto function and X is N — space, then Y not
necessarily N — space and the following example show this :
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Example : Letf: (N,D) > (N, 1) ; f(X) =X VxeN.
f is continuous function since the domain (N, D) is discrete topology (see page 37)
and clear f is onto and (N, D) is N — space, but (N, tes) IS not N — space.

Remark : The property of being a N — space is not a hereditary property and the
following example show that :

Example : Let X ={1, 2, 3, 4,5} and t = {X, ¢, {1, 4, 5}, {1, 3, 5}, {1, 5}, {1, 3, 4,
5}}. Clear that (X, 1) is N — space, since : the family of closed sets :
F={X,¢.{2,3},{2, 4}, {2, 3,4}, {2}}
Notes that any two closed sets except ¢ contains 2, so there is no nonempty disjoint
closed sets and the sets are disjoint are ¢ and any other closed. Also, there is disjoint
open sets to solve this case which are ¢ and X.
Now, take the subspace W < X ; W = {3, 4, 5} such that :
w={WNU;Ue}={W, ¢ {4 5}, {5} {3,5}}
and, Fw ={W, ¢, {3}, {4}, {3, 4}}
notes that : {3} and {4} closed sets in W and {3} (] {4} = ¢. But, there is no disjoint

open sets in 1y such that one of them contains {3} and the other contain {4}, so that
W is not N — space, while X is N — space.

Theorem : The property of being a N — space is a topological property.
Proof : Let (X, 1) = (Y, t') and suppose that X is N — space, to prove Y is N — space
)Y, ) =31 (X 1) > (Y, 1); f1l-1, fonto, f continuous, f open
Let FFEEF';FNE=¢
-+ fcontinuous = f(F), fYE) e Fand f ' (F) N FHE)=f(FNE)=f(¢) = ¢
(by theorem : the function f is continuous < the inverse image of every closed set in
codomaun is closed in domain)
+ XisN—space =>3U,Vet;UNV=0¢,F F)cUATYE) V)
. T open = f(U), f(V) et
.+ fisonto = f(f '(F)) c f(U) A f(fF(E)) < f(V)
= Fcf(U) A Ecf(V) (sincef(f'(F)=F A f(f(E))=E)
"UNV=¢e = fU)NTV)=FUNV)=1(¢9)=9¢
. Y is N — space.
By similar way we prove, if Y is N — space, then X is N — space.
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Theorem : The space (X, t) is normal (N — space) iff for each closed subset F < X
and open set W containing F (i.e., F < W), there exists an open set U such that F c U
cUcW.

Proof : (=) Suppose that X is N —spaceand Fc X ; F € 7.

Let Wet;FcW =FNX-W=p AX-WeF (since Wen)

w XisSN-space=3U,Vet;UNV=0¢0,FEcUAX-WcV)

=>X-VcW (since AcB = B°c A
- UNV=¢ = UcX-V
= Uc X-V (sinceAcB = AcB)
= UcX-V (since X -V closed = X -V =X —V)

= UcUcX-V (sinceAcA)
= FcUAUcUcX-V A X-VcW
=>FcUcUcW

(<) Suppose the condition of theorem satisfy, to prove X is N — space

LetF,E€F,;FNE=¢ =FcX-Een (since E € ¥F).
=3JUet;FcUcUcX-E (by hypothesis)
= UcX-E
= EcX-U (sinceAcB < B°c A

But, X — U open since U closed, say X - U =V

= EcV=X-UA FcU

AUNV =96, (sinceUcUandUNX-U=¢=>UNV=9)
. X'is N — space.

Remark : Let (X, t) and (Y, t') be two topological spaces. If the product space XxY
Isa N —space, then each X and Y are N — space.

But, the conversely is not true in general i.e.,. If each X and Y are N — space, then not
necessary that the product space XxY is a N — space.

Remark : Every metric space is N — space. Therefore, since (R, t,) is metric space,
then its N — space.

Theorem : A closed subspace of N — space is N — space.
Proof :

Let (X, t) N —space and (W, tw) closed subspace of X, to prove (W, tw) N — space
Let Fw, Eware closed sets inW; Fw (N Ew=1¢
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" Fw, Eware closed setsin Xand Fw =Fw (W A Ew=Ew W,
then Fw N Ew=¢ in X
- Xis N-space =3U,Vet;UNV=0¢0,FCUAECV)
= UNWAVNOWEenry, (by def. of ty)
unwnvnw=UNVvNW=¢NW=4¢,

sinceFw=FW=FycF A FhcW = FycUAFWcW=FycUNW
sinceEw=E(\W=EwcE A EwcW = EWcVAENSW=EycVNW
- (W, tw) iIs N —space.

Definition : T, — Space
Let (X, t) be a topological space. Then the space (X, t) is called a T, — Space iff its
normal and T, — space. i.e.,

T,—space = T, — space + N — space

Example : Let X = {1, 2, 3} and © = {X, ¢, {1}, {2, 3}}. Then the space (X, t) is not
T,—space, since its N — space but not T, — space.

Remark : If X is finite space, then (X, 1) is T, — space iff t = D, (because if X is
finite space, then its T, — space iff t =D and if t = D, then X is N— space).

Example : The space (X, D) is T,— space, since its T,;— space and N — space.

Example : The space (X, I) ; X contains more than one element is not T, — space,
since its not T, — space.

Example : The space (N, t.r) IS not T,— space, since its T, — space but not N — space.

Remark : The property of being a T, — space is not a hereditary property, since the
normality is not a hereditary property.

Theorem : The property of being a T, — space is a topological property.

Proof : Since the property T, — space and N — space are a topological property.
Then T, — space is a topological property.

VORI | Gy T EVPEYETIR CHTE VPR 107




Chapter Four 2025-2026 Separation Axioms

Theorem : A closed subspace of T,— space is T,— space.

Proof : Let (X, t) T4—space and W closed set in X, to prove W is T, — space
. Xis Ty —space = W is T, — space (since Ty is hereditary property)
= Wisclosed in X and X is N —space = W is N — space

(by theorem : A closed subspace of N — space is N — space)
- Wis T4— space.

Remark : Let (X, t) and (Y, t') be a topological spaces. If the product space XxY is
T,— space, then each X and Y is T,— space.

But, the conversely is not true in general i.e.,. If each X and Y is T,— space, then not
necessary that the product space XxY is T4— space.

Remark : Every metric space is T, — space. Since every metric space is T, — space
and N — space.

Theorem : Every T,— space is R — space.

Proof : Let (X, t) be T, — space = X is T; —space and N — space

Letx e Xand Fclosedsetin X; x ¢ F
=>{xX}e¥ (since X is T, — space < {x} closed V x € X}
= {X}NF=¢ (sincex ¢ F)

w XiISN-space =3U,Vet;UNV=0¢,{x}cUA FCV)
= XeUA FcV

- Xis R —space.

Corollary : Every T,— space is T;— space.

Proof : Every T, — space is R — space (by the above theorem)
Every T, —space is T, — space and N — space (by def of T, — space)
We have, X is T; — space R — space

. X'is T3 —space.

Remark : Every T, — space is T, — space since every T, — space is Tz — space and
every Tz;— space is T,— space so that :
T,—space = T;—space = T,—space = T,—space = T,— space
. & # o
Notes that : N — space qé R —space and N — space gé T,— space,
but N-—space + T;— space = T;— space
and N — space + T, — space = R— space
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Remark : the following figure show that the relation between separation axioms Ty,
T,,T,, T3, T4, and metric space and usual topology (R, 1) :

In previous illustrate we notes that a T, — space not necessarily R — space. Also,
If X is T, — space, then its not necessarily N — space, but this statements are satisfy if
we add the condition that compaceness space and the following theorems show this :

Theorem : Every compact T,— space is R— space.

Proof : Let (X, t) be T, — space and compact, to prove X is R — space.
LetxeX,Fe¥F ;xeF=>x#2yVyekF

o Xis Tp—space = I U, Vyet; Uy Vy=¢,XxeUyryeV,).

We have two family of open sets are {U,},cr and {V,},r such that every element in
F exists in one element of the family {V,},<r and every element in the family {U,}y¢

contains the element x and every U, corresponding V, such that U, N V, = ¢.
Therefore, the family {V,},<r open cover for F

= {Vy},er Open cover of F, i.e., F < Uyer Vy
" F closed in the compact space (by hypothesis), so that F compact space and we
have : =3yn Yo ...,y s FcUL Vg,
Therefore, {Vy, }iL, is a finite family of open sets cover F (let V = UiL; V. ),
On the other hand, {Uy,}iL, is a finite family of open sets and every element in this
family contains x (let U = N, Uy, )
= Uand V are open sets  (by second and third condition of def of top.)
Suchthatxe Uand FcV
Notes that, UV =¢ (sinceU= NiL; U, =UcUy; Viand Uy V= ¢)
. X'is R —space.
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Remark : There is a theorem similar the above theorem and their prove is similar too
and we introduce this theorem but without prove.

((In T, — space we can separated any point x and compact subset not contains x by
disjoint open sets))

Corollary : Every compact T,— space is Tz — space.
Proof : Every T, — space is T, — space

Every T, — space and compact is R — space (by the above theorem)
We have, X is T, — space and R — space
. X'is T3 — space.

Theorem : Every compact T,— space is N — space.
Proof : Let (X, t) be T, — space and compact, to prove X is N — space.
Let FE€e#;F(E=¢ = F, Eare compact.
(by theorem : Every closed set in compact space is compact)
Choose,xeF=>x¢E= AU, Veet; U, VE=0¢, (XU A EcVp).
(by previous remark, since X is T,— space and E compact set and x ¢ E)

Now, repeated this method on every element in F, we have a family of open sets
cover F as follows :

{Uy; xeFAUyet} = F < Uker Uy

© Fiscompact set = 3 Xy, Xp, ..., Xn 3 F CUjL; Uy,
Also, we have a family of open sets every elements in this family contain E as
follows :

{Vi;i=1,2,...n A EcCcV; ViAa Vjert}

ViNUi=¢ Vi ; i=1,2 ...n

Say,U=Uj., Uy, =FcUer (by third condition of def. of top.)
Say, V=NL,V; =>EcVer (by second condition of def of top.)
Notes that, UV =¢ (since [U=UL,Ugx]l NIV=NL V] =9¢)

- Xis N — space.

VORI | Gy T EVPEYETIR CHTE VPR 110




