Data Structures and

Algorithms
Application of Stacks

Stack operations

» Common operations:

v" Push — add a given element to the top of the stack.
v Pop —read the topmost element and delete it from the stack.
v Peek —return the topmost element.

v' Size —return the number of elements in the stack.

STACK APPLICATION:
POSTPONING DATA USAGE

= ARITHMETIC STATEMENT

v Example:
A *B + C (How computers generate it¢22)
v Arithmetic expression written in INFIX as above example.
v However compiler change to POSTFIX/PREFIX for calculating purposes.
v Three different formats:

Infix: A+B the operator appears between two
operands.

Prefix: +AB the operator appears before the two
operands.

Postfix: AB+ the operator appears after its two
operands.

STACK APPLICATION:
POSTPONING DATA USAGE

priority arithmetic
4 N, NOT
3 *,/. AND,DIV, MOD
2 +, -, OR
] =, <, >, <=>=,<>

a-p*(c+d)/fAg*h

ST1
a
a
ab
ab
ab
abc
abc
abcd
abcd+
abcd+*
abcd+*f
abcd+*f
abcd+*f g
abcd+*fgA/
abcd+*fgA/h
abcd+*fgA/h*-

Scan the infix expression from left
to right

Test the character

1.If the character is an operand,
push it to the ST1.

2. If the character is a left
parenthesis, push it to the ST2.

3. If the character is a right
Pcren’rhems then pop entries from
he ST2 and push them fo the ST
until a left parenthesis is popped

4.1f the character is an operator

4.1.if the precedence of the
scanned operatoris > the
?recedence of the operator in
T2 push it

4.2. else, pop all operators from
ST2 which are > or =to in
precedence than that of the
scanned operator and push
them to ST1. after doing that
push the scanned operator to
the ST2.

At end of the expression. Pop all
entries that remain in the ST2 and
push them to ST1.

Exercises

Q1: Convert the infix expression 10 + (6*3 — (16/2A3)*4)*7
Into postfix form showing stacks status after every stepe

Q2: Convert the infix expression ((A- (B + C)) * D) / (E +F)
Into postfix form showing stacks status after every step<e

ARRAY P2

INTRODUCTION TO DATA STRUCTURE

Concept of Data Structures:

e A data structure is a way of storing and organizing data in a computer
so that it can be used efficiently.

* Efficient data structures are a key to designing efficient algorithms.

* Often a carefully chosen data structure will allow the most efficient
algorithm to be used. Thus, algorithms and data structures go hand in

hand.

What is array?

* An array is a group of consecutive memory location with same name
and data type.

Array size = S

=1%) 86 89 76 2

o 1 N 3 a b 4

index
manrks

Array variable name

Initializing array

* Int b[5]=1{ 16,2,18,19,17}

17

* Int b[0]=16
* Int b[3]=19

Array in C++

Float a[6]= {12.2,4.5,66.8,13.8}
122 | 45 | 663 | 138 | 00 | 00
0 1 2 3 4 5

int s[3]={6,77,22,54} X

char d[5]={@’,’b’,, ’c’,'d’} X
Int a[]= {3, 5,20,8}
3 | 5 | 2 | 8
0 1 2 3

Array in C++
Char k[]={A",/B’, 'C’, 'D’}

flot z[]; X

Array in C++

Void main()

{
int grad [] =10, 1, 2};
int scor [3];
scor= grad;

Error: cannot assign one array to
another

#include “iostream.h”
Void main ()

{

Int count=0;
char capt[10];
For (int i=0; i< 10; i+)
cin>> capt[i];
for (int i=0; i<10; i++)
if (capt[i]>= A’ && capt]i] <= Z’)
count++;

cout<<count;

}

Array in C++

Input
CBdzZ#6w*8H

Output

Writ a program to store 10 characters in an

array and print the count of digits

#include “iostream.h” |n pUt
Void main () CBdZ#6 *8
W

{

int count= 0;
char capt[10];
For (int i=0; i< 10; i+)

cin>> capt[i; OUtpUt
for (int i=0; i<10; i++) 2
if (capt[i]>= ‘0’ && capt[i] <= ‘9’)
count++;
cout<<count;

}

Writ a program to store 10 characters in an array
and change each capital letter to small letter

#include “iostream.h”
Void main () I n p Ut
{ ABdZ#6w*8H
char capt[10];
for (int i=0; i< 10; i+)
cin>> capt/i]; OUtpUt
for (int i=0; i<10; i++) abdz#6w *8h

if (capt[i]>= A" && capt[i] <= ‘Z’)
capt[i] = capt-A’ +'a’;
for (int i=0; i< 10; i+)
cout<<capt[i];

}

Array In C++

Exercise

Write a program to store 30 characters in an array and print the counts
of digits, capital letters, small letters, and special characters.

Evaluate
Postftix

Notation

BY

HIBA ADIL YOUSIF

ALGORITHMS

1. Start reading from left to right and push the operands into stack.

2. If an operator occurs, then pop last two operands from stack and
perform respected operation.

3. (operand 2) operator (operand 1).

4. Push the result into stack.

ExX:78+63*2/-

EXERCISES

Q1: Evaluate the following postfix notation showing status of stack after execution of each
operation:

623+-382/+*2*3+
Q2: Given the following expression:
90 -6 *(2+4)/ 3~ 2*9
1.Gonvert the expression to postfix notation using two stacks.

2.Evaluate the postfix notation showing status of stack after execution of each operation.

INTRODUCTION TO DATA
STRUCTURE

INTRODUCTION TO DATA

STRUCTURE
o

Concept of Data Structures:

* A data structure is a way of storing and organizing
data in a computer so that it can be used efficiently.

« Efficient data structures are a key to designing
efficient algorithms.

« Often a carefully chosen data structure will allow the
most efficient algorithm to be used. Thus, algorithms
and data structures go hand in hand.

Types of Data Structures

Elassit:t‘hta structures
- ' \
Lmeat Data dtmetures Non-Linear Data Structures
| |

Amp Lokl Sk UBS T Gl Hsbil 6

What is array?
\

* An array is a group of consecutive memory location
with same name and data type.

Awnnrﬁze==5

(2] 1 2 3 a . Array
. index

marks

Array variable name

Declaration of an array

‘\

Like a regular variable, an array must be declared before
it is used

Data_type array name [size];

+ Typeis a valid type like (int, float, char...)
* Name is valid identifier

R —

int a[10];
+ float deg[5];
+ char a[15];

Initializing array

‘\

Int b[5]= { 16)2)18)19)17}

b 0 1 2 3 <
B 16 | 2 | 18 19 17
Int b[0]=16

Int b[3]=19

#include <iostream.h> g

Void main () |nput
{ Float a[6]; 5.7 66.8 90.2 40.0 65.8 33.3
For (int i=0; i<6; i++)
cin >> a[i];

Output

For (int i=0; i<6; i++)

if (a[i] <50.0) 0.0
a[i]=0.0; 66.8
For (int i=0; i<6; i++) 90.2
cout <<a[i] <<”\n”’; 0.0
} 65.8

0.0

#include <iostream.h>‘\

Void main ()

{

Float a[6], sum=0.0;

For (int i=0; i<6; i++)
cin>> a[i];

For (int i=0; i<6; i++)

sum=sum + a[i];

cout << “sum="<<sum;

}

Input
15.6 83.3 90.0 35.5 60.0 45.3

Output
sum=329.7

Advantages of array

\

* Array can store a large number of values with
single name.

* Array is used to process many value easily and
quickly.

* The values stored in an array can be stored
easily.

* The search process can be applied on arrays
easily.

\\

Q1: write a program to store 10 integers in an array and
print the multiplication of all its integers.

B ———

THANK YOU

Linked List

deletion

Deletion

= Delete Node

v

v

_ogically remove a node from the linked
Ist by changing various link pointers and
then physically delefing the node from
dynamic memory.

Delete can be done at the first node, at
the last node or at a specified position of
the list.

Deletion

» Operation: deletion

A{] Al A/Q A3 A4 T L

Deletion

Head pointer

Deleted entry
Name Pointer
Old pointer
v Name Pointer)

4\ Name Pointer
S

New pointer NIL

Struct node {
int data;
node *next;
} *start;

Void delete (int n)

{
node *p, *pl;
if(start ==NULL)
return;

Deletion

start

— NULL

Deletion

Struct node {

int data; if (n==1) {
. _ Start= p->next;
} *start; \ return;

Void delete (int n)
{
node *p, *pl;
if(start ==NULL)
refurn;
p=start;

start

o)
o e

Struct node {
int data;
node *next;
} *start;

Void delete (int n)
{
node *p, *pl;
if(start ==NULL)
refurn;
p=start;

Deletion

if (n==1) {
Start= p->next;
delete p;
retfurn;
}
For (i=1; p!=NULL && i<n-1; i++)
p=p->next;
If(p==NULL | | p->next ==NULL)
return;
pl=p->next;
p->next= pl->next;
delete pl;

T

Exercilse

» write a function 1o delete the first occurrence of a
node with a given key in linked list.

a complete program to delete a node by
INg the above function.

o N e

Linked List

Implementation p2

stfruct node {
int stud-id;
float average;
node *next;

¥

void main()

{ node *p,*p2,* start;

int n,i;

P=new node;
Start=p;
cin>>n;

For(i=T1;i<=n;i++) {
cin>> p -> stud-id;
cin>> p -> average;

If (il=n) {

P2=new node;
pP->next=p2;
P=p2;

} else
p2->next=NULL;

}

stfruct node {
int stud-id;
float average;
node *next;
b
void main()
{ node *p,*p2,* start;
int n,i;
P=new node;
Start=p;
cin>>n;

For(i=T1;i<=n;i++) {
cin>> p -> stud-id;
cin>> p -> average;

If (il=n) {

P2=new node;
pP->next=p2;
P=p2;

} else
p2->next=NULL;

B

p2

654
88.4

Null

void main -

{ nonqren*fp,QpQ,* start; P=start
Nt N,i; :
P=new node; While(p!=NULL)

Start=p; {
Cin>>n; :

For(j=1;i<=n;i++) { . cout<p->stud-id:
cin>> p -> stud-id; cout<<p->average,

IN>>p -> average;

C
If (IT=n) { P=pP->next;

p2=new node; J
O->next=p2; \

o=p2;
P

} else
p2->next=NULL;

}

654 Null
88.4

Exercises

®» Q1| write a program to create a linked list of n nodes each node
containing employee information (hame, salary, age). Print the
name of employee that has largest salary.

Q2 wri

a program fto create a linked list of n nodes each node

containing student information (hame, average). Print the names of

stfugents that have averages less than 50.

Ahmed Suha Ali
500 750 300

Linked List

Implementation

A List ADT using Linked List

» Definition: A collection of nodes that form a linear list structure. Each node is a compound

object that stores an element and a reference, to call the next node or another node.

Structure of a node

—)

fist —

A0

Data

link

A2}

A3 —

-

Characteristics

» [nsert and delete nodes in any order
» The nodes are connected

= Fach node has two components

= Information (data)

» Link to the next node (reference)

= The nodes are accessed through the links between them

first
o——>

1) Al i" 1) Kamel "

"Musa"

head

struct node{
char name[13];
float salary;

node*next;

i

ahmed
556

Ali
7894

suha
3333

Null

struct node{
int stud-id;
float average;
node *next;

void main()

{ node *p,* start;
P=new node;
Start=p;

cin>> p -> stud-id;

cin>> p -> average;

P ->next=null;

}

start =%

4556
/8.88

void main()

{ node *p,*p2,* start;
P=new node;
Start=p;

cin>> p -> stud-id;
cin>> p -> average;
P ->next=null;
P2=new node;
Cin>>p2->stud-id;
Cin>>p2->average;
next=null;

02 = 133
56.3

P —> 4554
start ==——s| 788

NULL

void main()

{ node *p,*p2,* start;
P=new node;
Start=p;

cin>> p -> stud-id;
cin>> p -> average;
P2=new node;
Cin>>p2->stud-id;
Cin>>p2->average;
P2->next=null;
P->next=p2;

P —/» 4554
start == 78.8

void main()

{ node *p,*pP2,*pP3,* start;
P=new node;
Start=p;

cin>> p -> stud-id;
cin>> p -> average;
P2=new node;
cin>>p2->stud-id;
cin>>p2->average;
P->next=p2;
P3=new node;
cin>>p3->stud-id;
cin>>p3->average;
P3->next=null;
2->next=p3;

4556
start ==——s| 788

133
56.3

657
87.9

Exercise

» Q) | write a program to create a linked list
of 4 nodes, each node containing book
information(title, author's name, year of
publication)

LINKED LIST- INSERTING
A NODE

BY

HIBA ADIL

INTRODUCTION

Linked list: is one of the fundamental data structure, and can be used to
implement other data structures. In linked list there are different
numbers of nodes. Each node is consists of two fields. First field holds
the value or data and the second field holds the reference to the next
node or Null if the linked list is empty.

Example

m ; re—
next —= 32 |null }

Start —\f 20 next —~ 30 Inext ~—\~ 70 * |

OPERATION ON LINKED LIST

¢ [nsertion

¢ Deletion
¢ Searching

ADDING AN ELEMENT TO A LINKED
LIST

1. Involve two steps:

¢ Finding correct location
¢ Doing the work to add the node

2. Finding the correct location:
Three possible positions

e The front
¢ |n the middle
e The end

INSERT AT FIRST

For insert at first the New Node should point to the first node (before insertion) and start should point
to the New Node.

= /50> A| 30 B | 60 c |40 > D | Null
al
/ N\ —t
Start

M | 500
Start=90

Void insert_front (int item)
{

Node *p;

P=new node;

P -»data = item;

P -»next = start;

Start = p;

1

INSERT AT MIDDLE

For insert at middle the New Node should point to the node next toit and the previous node should
point to the New Node

start
———=1 8 (30 > 4 2| 40 9 | Null
pl F

60

Void insert _ after(int item, int value)
{

Node *p, *p1;

P=new node;

P -> data=item;

P1 =start;

While (p1-> data !=value)

P1= pl -> next;

If (start ==Null || p1== Null) {
Cout<<” given node must not be null

Return; }
P -=» next =pl ->next;
P1 -» next = p;

1

INSERT AT LAST

For insert at last the last node (before insertion) should point to the New Node and the “link” part of
New Node must be Null

P1 3
start (300> A | 30 B |60 c|a40 D -“)MI

void insert_ end (int item)
{

Node *p, *p1;

P= new node;

P -» data = item;
P -=next = Null;
P1 =start;

While (p1 !=Null)
P1 =pl -> next;
P1 -»next = p;

1

DISPLAY

Void print ()
.
Node *p;

P=start;
While (p != Null) {
Cout << p -> data;
P=p -> next;

}

}

PROCESS SUMMARY

1, Create a New Node

1. Applyvalues o the “Data” and “Link’ par
3, Traverse n the linked lst until we reach to the desired point
K

4, Insert node using swaps of

EXERCISES

Q. writes a program to insert a new node to a linked list by displayinga
menu to select one of the insertion methods. For example

1. Insert a node at the front
2. Insert a node after a given node.
3. Insert a node at the end

4. Exit
|

CIRCULAR QUEUE

Data structures and algorithms

CIRCULAR QUEUE

» Queue is linear list in which data can only be inserted at one end,
called the rear (back), and deleted from the other end, called the
front.

» First-In-First-Out (FIFO) concept.

|Banks'H'Us|

R (RERARES L

(a) A queue (line) of people
Remove Insert
(dequeue) (enqueue)

— | | | | | | <—

front rear

(b) A computer queue

CIRCULAR QUEUE

®» Fnqueue: add data fo element in queue
Will increased value of rear by |
®» Dequeue: take data from element in queue

Will increased value of front by 1

CIRCULAR QUEUE

» WWhen the queue reaches the end of the array, it “wraps
around” and the rear of the queue starts from index O.
The figure below demonstrates the situation.

Enqueue(“P”)
will resultin ...

CIRCULAR QUEUE

Dequeuve() remove ‘s’
and <front> moves to the
next item

CIRCULAR QUEUE

20 45 8¢9 10
FroLo I?Eor=4
20 45 89 10 66 90
10 66 90

Front=4

Rear=6

CIRCULAR QUEUE

67 10 66 90
Retr=0 Fr§m=3
67 ;9 10 66 90
1
Rear=1 Front=3
67 89 50 10 66 90
Re1=2 F?onf=3

CIRCULAR QUEUE

89

(I

Front=2 Rear=3

tt

Rear=3 Front=3

Queue Implementation

Queue Implementation

» Queue is linear list in which data can only be inserted at one end,
called the rear (back), and deleted from the other end, called the
front.

» First-In-First-Out (FIFO) concept.

|Banks'H'Us|

R (RERARES L

(a) A queue (line) of people
Remove Insert
(dequeue) (enqueue)

— | | | | | | <—

front rear

(b) A computer queue

Queue operation

®» Fnqueue: add data fo element in queue
Will increased value of rear by 1
®» Deqgueuve: take data from element in queue

Will increased value of front by 1

Queue Implementation

®» Nt queue[size]
» nt rear=front=-1

» ntitem

0 1 2 3 4
20 55 90 87 34

front rear

Queue Implementation: Enqueue

Check the queue if it is full or not

Void enqueue(int item) OVé?ﬁ‘IoT’ rite the queue is
{ Nno then
A =s17e- 1) increase the value of rear to point to

the next location
Insert the new element to the queue

cout<<*queue is full”;

else where the rear pointer is poinfing
{
Rear=rear+1;
queue(rear]=item; 20
Y Front=0
If (front==-1) Rear=0
Front=0;
ron 20 43
}

Front=0 Rear=1

Queue Implementation: Dequeue
» check the queue is empty or not
Int dequeue() yes —— print queue under
{ flow
If (front==-1)
cout<<“queue is empty” no — ., then
return; = access the item stored where the
elze front pointer is pointing
If (front==rear) point to the next item
{ Return the item
front=-1;
Rear=-1;
}
else
Front=front+1;
} 20 67 89
Return(item);
) front=0 Rear=2
67 89

front=1 Rear=2

INt

{

Queue Implementation

dequeuege()

If (front==-1)
cout<<“queue is empty”
return;

else

{

ltem=queue|front];
If (front==rear)
{
front=-1;
Rear=-1;

}

else

}

Front=front+1;

Return(item);

}

front=-1
rear=-1

» check the queue is empty or not

yes —» print queue under
flow

no _ , then

= qaccess the item stored where the
front pointer is pointing

= increase the value of front to
point to the next item

Return the item

89

Front=3
Rear=3

Data Structures and
Algorithms

Stack Exercise

EXAMPLE: If the stack stream is MBNYRI which of the following

sequence of operation give the out NYBIR

X
v

UuuuoOuoOuUOOUO

UuuoOuOOUUOO

N

B B B B

M /M M

/ NY R

N |

B B B >
M M M M

NYBIR

EXAMPLE: If the stack stream is 12345 which of the
following permutation can be obtained as out put siream

3 42315 X

3 3 3 24531 \/

23

4 51

Exercises

» Q:if the stack streamis Z W Y D K F which of the following sequence of
operations gives the output Y W D K F Z let U for pushing an item in the
stack and O for popping an item.

« UUUOOUUUOOOO
« UUUOOUOUOUOO
« UUUOOUUOUOOO
- UUUOUOOUUUOO

= Q. If/tThe order of the stack inputis 127 45 8 which of the following
permutation can be obtained as output stream ¢

« 5481772
« 275814
- /21584
« 214875

Exercises

Write a program to perform the undo and redo operations
using stacks. The program should display the following list.

1. Undo
2. Redo
3. Exit

Data Structures and
Algorithms

Stack Implementation

Intfroduction

» Stack s alinear list in which data items can only be accessed at one end,
called the top of the stack.

» The fopmost element is the most recent element added to the stack
®» Data item: Simple data types.
» | ast-In-First-Out (LIFO) concept

Top

[T 11
[T T]
[T 11

————/g
Stack of coins Stack of books Computer stack

STACK USING ARRAY-BASED IMPLEMENTATION

» nt stack]size];

8 Top=2
13
20

» Nt top=-1;

» nfitem;

STACK USING ARRAY-BASED IMPLEMENTATION

Void push (int item) » Check if the stack is full or not
{ yves__, write the stack is
if (fop==size-1) over flow
cout<<“the stack is over flow”"<<"*\n"; no ——then
else increase the value of top to point to
{ the next locafion
i : [top=top+1]
oSl Stack[++top]=item
stack[top]=item: Insert the new element to the stack
}
60 top
55 top 55

20 20

STACK USING ARRAY-BASED IMPLEMENTATION

Void POpP ()
{
if (top==-1)
{

cout<“stack under flow"<<"*\n";
return

item=stack[top];
top=top-1;

return(item)

ltem=stack[top--]

80 fop

20

20

tfop

» check the stack is empty or not

yes — , print stack under
flow

no —— then

take the item where the top is
pointing to

decrease the value of the top to
point to the previous item

[Top =top-1]

EX: write a program to insert 10 characters intfo a stack and print them in
reverse order

Void push(char item)

{ INnput:

/ HDSMaOtRCp

Char pop ()

{ Output:

} PCRtOaMSDH

Void main()

{ char ch; while (top>-1)
cout<< pop();

For (int i=0; i<10; i++){ }

cin>>ch;

Push(ch); }

EX2: write a program to insert 7 items into a stack each
Ifem represents an employee’s salary. Print the item that its
value greater than 200

Void push (float item)

{ Input:

} 500 203 102 90 70 400 80

Float pop ()

{ QOutput:

} 400 203 500

Void main(){

Float salary, res; While (top>-1){

For (int i=0; i< 7; i++){ Res= pop();

cin<<salary; If {res>200)
Cout<<res;

push(salary))

J }

» Q] . write a program to manage a stack manually by displaying a menu
to select one of stack operations. For example,

1. insert an element.
2. delete an element.
3. display the stack contents.

4. exit.

®» Q2: Suppose an array implementation of a stack that
stores 20 integers. Write a program 1o print the count of
even numbers on the stack that their values greater
than 10.

Data Structures and
Algorithms

Types of Data Structures

Classic n‘iata structlires
- ' \
Lmeat Data btretures Non-Lmear Data Structures
| |

Amp Lokl Smk UBE Tee Geph Habule O

Intfroduction

» Stack s alinear list in which data items can only be accessed at one end,
called the top of the stack.

» The fopmost element is the most recent element added to the stack
®» Data item: Simple data types.
» | ast-In-First-Out (LIFO) concept.

Top

[T 11
[T T]
[T 11

————/g
Stack of coins Stack of books Computer stack

Stack operations

» Common operations:
v Push — add a given element to the top of the stack.

v Pop —read the topmost element and delete it from the stack.

v Peek —return the topmost element.

v" Size —return the number of elements in the stack.

Stack operations

» Pysh - add a given element to the top of the
stack.

» |[f stack is full, resize or return error if not succeed

Data

Push > Top

Top

00

[]
] Operation

Stack Stack

Stack operations

vPop - remove the top element of the stack
and return the element to the caller.

v Will not succeed if the stack is empty - refurn
error

Data

Top Pop >
Top

Operation

00
1

Stack Stack

Push operation

» Check if the stack is full or not
yes — . write the stack is over flow
no —— then

iIncrease the value of top to point to the next
location

[top=top+1]

Insert the new element to the stack

Pop operation

= check the stack is empty or not
yes — . print stack under flow
no —— then
take the item where the top is pointing to

decrease the value of the top fo point to the
previous item

[Top =top-1]

Example - Given stack S with list of operations as below. lllustrate the stack
operations step by step:
push (green), push (blue), pop(). push(red), pop(). popl()

b|Ue Topz]
groan | Top=0 groan groan | 1op=0
push push POP
red Top=1
groan groan Pop=0
push pOpP Pop

Top= -1

Example - Given stack S with list of operations as below. lllustrate the
stack operations step by step:

push (20), push (13).push (50), pop(). push(8), pop(), pop()

13 Top=1 = Top=2
13
20 Top=0 20 20
push push push
8 Top=2
13 Top=1 13 13 Top=1
20 20 20 20 fop=0

pop push POoP POP

Exercise

» Consider the following sequence of stack operations:
push (A). push(X), pop(), push(M), pop(). push(G),
Pop()

what is the sequence of popped values and what is the
final state of the stacke

	Slide 1: Linked List
	Slide 2: Deletion
	Slide 3: Deletion
	Slide 4: Deletion
	Slide 5: Deletion
	Slide 6: Deletion
	Slide 7: Deletion
	Slide 8: Exercise
	Slide 1: Linked List
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Exercises
	Slide 1: Linked List
	Slide 2: A List ADT using Linked List
	Slide 3: Characteristics
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Exercise
	Slide 1: Linked List- Inserting a node
	Slide 2: Introduction
	Slide 3: Operation on Linked List
	Slide 4: Adding an Element to a Linked List
	Slide 5
	Slide 6: Insert at First
	Slide 7: Insert at Middle
	Slide 8: Insert at Last
	Slide 9: Display
	Slide 10: Process Summary
	Slide 11: Exercises
	Slide 12
	Slide 1: CIRCULAR QUEUE
	Slide 2: CIRCULAR QUEUE
	Slide 3: CIRCULAR QUEUE
	Slide 4: CIRCULAR QUEUE
	Slide 5: CIRCULAR QUEUE
	Slide 6: CIRCULAR QUEUE
	Slide 7: CIRCULAR QUEUE
	Slide 8: CIRCULAR QUEUE

