
Data Structures and

Algorithms
Application of Stacks

Stack operations

Common operations:

 Push – add a given element to the top of the stack.

 Pop – read the topmost element and delete it from the stack.

 Peek – return the topmost element.

 Size – return the number of elements in the stack.

STACK APPLICATION:

POSTPONING DATA USAGE

 ARITHMETIC STATEMENT

 Example:

A * B + C (How computers generate it???)

 Arithmetic expression written in INFIX as above example.

 However compiler change to POSTFIX/PREFIX for calculating purposes.

 Three different formats:

Infix: A+B the operator appears between two
operands.

Prefix: +AB the operator appears before the two
operands.

Postfix: AB+ the operator appears after its two

operands.

STACK APPLICATION:

POSTPONING DATA USAGE

priority arithmetic

4 ^, NOT

3 *,/, AND,DIV, MOD

2 +, -, OR

1 =, <, > , <=,>=,<>

a-b*(c+d)/f^g*h

Ch ST1 ST2

a a …….

- a -

b ab -

* ab - *

(ab - *(

c abc - *(

+ abc - * (+

d abcd -*(+

) abcd+ - *

/ abcd+* -/

f abcd+*f -/

^ abcd+*f -/ ^

g abcd+*f g -/^

* abcd+*fg^/ -*

h abcd+*fg^/h - *

… abcd+*fg^/h*- ….

Scan the infix expression from left
to right

Test the character

1.If the character is an operand,
push it to the ST1.

2. If the character is a left
parenthesis, push it to the ST2.

3. If the character is a right
parenthesis then pop entries from
the ST2 and push them to the ST1
until a left parenthesis is popped

4.If the character is an operator

4.1. if the precedence of the
scanned operator is > the
precedence of the operator in
ST2 push it

4.2. else, pop all operators from
ST2 which are > or = to in
precedence than that of the
scanned operator and push
them to ST1. after doing that
push the scanned operator to
the ST2.

At end of the expression. Pop all
entries that remain in the ST2 and
push them to ST1.

Exercises

Q1: Convert the infix expression 10 + (6*3 – (16/2^3)*4)*7

Into postfix form showing stacks status after every step?

Q2: Convert the infix expression ((A – (B + C)) * D) / (E +F)

Into postfix form showing stacks status after every step?

ARRAY P2

INTRODUCTION TO DATA STRUCTURE

Concept of Data Structures:

• A data structure is a way of storing and organizing data in a computer
so that it can be used efficiently.

• Efficient data structures are a key to designing efficient algorithms.

• Often a carefully chosen data structure will allow the most efficient
algorithm to be used. Thus, algorithms and data structures go hand in
hand.

What is array?

• An array is a group of consecutive memory location with same name
and data type.

Initializing array

• Int b[5]= { 16,2,18,19,17}

• Int b[0]=16

• Int b[3]=19

Array in C++

Float a[6]= {12.2,4.5,66.8,13.8}

0 1 2 3 4 5

int s[3]= {6,77,22,54} ×

char d[5]= {‘a’, ’b’,, ’c’, ’d’} ×
Int a[]= {3, 5,20,8}

0 1 2 3

12.2 4.5 66.8 13.8 0.0 0.0

3 5 20 8

Array in C++
Char k[]= {‘A’ ,’B’, ‘C’, ’D’}

flot z[]; ×

Array in C++

Void main()

{

int grad [] = {0, 1, 2};

int scor [3];

scor= grad;

}
Error: cannot assign one array to

another

Array in C++

#include “iostream.h”

Void main ()

{

Int count= 0;

char capt[10];

For (int i=0; i< 10; i+)

cin>> capt[i];

for (int i=0; i<10; i++)

if (capt[i]>= ‘A’ && capt[i] <= ‘Z’)

count++;

cout<<count;

}

Input
C B d Z# 6 w * 8 H

Output

4

Writ a program to store 10 characters in an
array and print the count of digits
#include “iostream.h”

Void main ()

{

int count= 0;

char capt[10];

For (int i=0; i< 10; i+)

cin>> capt[i];

for (int i=0; i<10; i++)

if (capt[i]>= ‘0’ && capt[i] <= ‘9’)

count++;

cout<<count;

}

Input
C B d Z # 6 w * 8

Output
2

Writ a program to store 10 characters in an array
and change each capital letter to small letter

#include “iostream.h”

Void main ()

{

char capt[10];

for (int i=0; i< 10; i+)

cin>> capt[i];

for (int i=0; i<10; i++)

if (capt[i]>= ‘A’ && capt[i] <= ‘Z’)

capt[i] = capt-‘A’ +’a’;

for (int i=0; i< 10; i+)

cout<<capt[i];

}

Input
A B d Z # 6 w * 8 H

Output
a b d z # 6 w *8 h

Array in C++

Exercise
Write a program to store 30 characters in an array and print the counts
of digits, capital letters, small letters, and special characters.

Evaluate
Postfix

Notation
BY

H IBA AD IL YO U S IF

1. Start reading from left to right and push the operands into stack.

2. If an operator occurs, then pop last two operands from stack and
perform respected operation.

3. (operand 2) operator (operand 1).

4. Push the result into stack.

ALGORITHMS

Ex: 7 8 + 6 3 * 2 / -

7

8

+

Cont.

6

3

*

Cont.

2

/

-

EXERCISES

Q1: Evaluate the following postfix notation showing status of stack after execution of each

operation:

6 2 3 + - 3 8 2 / + * 2 * 3 +

Q2: Given the following expression:

90 – 6 * (2+4) / 3 ^ 2* 9

1.Gonvert the expression to postfix notation using two stacks.

2.Evaluate the postfix notation showing status of stack after execution of each operation.

Thanks

INTRODUCTION TO DATA
STRUCTURE

المرحله الثانيه مسائي
م هبه عادل يوسف .م

هياكل البيانات والخوارزميات

Concept of Data Structures:

 A data structure is a way of storing and organizing
data in a computer so that it can be used efficiently.

 Efficient data structures are a key to designing
efficient algorithms.

 Often a carefully chosen data structure will allow the
most efficient algorithm to be used. Thus, algorithms
and data structures go hand in hand.

INTRODUCTION TO DATA
STRUCTURE

Types of Data Structures

 An array is a group of consecutive memory location
with same name and data type.

What is array?

Like a regular variable, an array must be declared before
it is used

Data_type array_name [size];

 Type is a valid type like (int, float, char…)

 Name is valid identifier

Declaration of an array

 int a[10];

 float deg[5];

 char a[15];

Examples:

Int b[5]= { 16,2,18,19,17}

Initializing array

Int b[0]=16
Int b[3]=19

Array in C++

#include <iostream.h>
Void main ()
{

Float a[6];
For (int i=0; i<6; i++)

cin >> a[i];

For (int i=0; i<6; i++)
if (a[i] <50.0)

a[i]=0.0;
For (int i=0; i<6; i++)

cout <<a[i] <<”\n”;
}

Input
5.7 66.8 90.2 40.0 65.8 33.3

Output
0.0

66.8

90.2

0.0

65.8

0.0

Array in C++

#include <iostream.h>

Void main ()

{

Float a[6], sum=0.0;

For (int i=0; i<6; i++)

cin>> a[i];

For (int i=0; i<6; i++)

sum= sum + a[i];

cout << “sum=”<<sum;

}

Input
15.6 83.3 90.0 35.5 60.0 45.3

Output

sum=329.7

 Array can store a large number of values with
single name.

 Array is used to process many value easily and
quickly.

 The values stored in an array can be stored
easily.

 The search process can be applied on arrays
easily.

Advantages of array

Q1: write a program to store 10 integers in an array and
print the multiplication of all its integers.

Exercise

THANK YOU

Linked List
deletion

Deletion

▪ Delete Node

✓Logically remove a node from the linked
list by changing various link pointers and
then physically deleting the node from
dynamic memory.

✓Delete can be done at the first node, at
the last node or at a specified position of
the list.

Deletion

 A0, A1, A2, ..., AN-1

 Operation: deletion

Deletion

Deletion
Struct node {

int data;

node *next;

} *start;

Void delete (int n)

{

node *p, *p1;

if(start ==NULL)

return;

start NULL

Deletion
Struct node {

 int data;

 node *next;

 } *start;

Void delete (int n)

{

 node *p, *p1;

 if(start ==NULL)

 return;

 p=start;

if (n==1) {
 Start= p->next;
 delete p;
 return;
 }

40 90 55 20 NULL89start

startp

Deletion

Struct node {

 int data;

 node *next;

 } *start;

Void delete (int n)

{

 node *p, *p1;

 if(start ==NULL)

 return;

 p=start;

if (n==1) {
 Start= p->next;
 delete p;
 return;
 }

For (i=1; p!=NULL && i< n-1; i++)

 p=p->next;

 If(p==NULL || p->next ==NULL)
 return;

 p1=p->next;
 p->next= p1->next;
 delete p1;
 }

40 90 55 20 NULL89start

p p p1

Exercise
 write a function to delete the first occurrence of a

node with a given key in linked list.

Write a complete program to delete a node by

calling the above function.

55 90 55 20 NULL89start

Linked List
Implementation p2

struct node {
int stud-id;
float average;
node *next;
};
void main()
{ node *p,*p2,* start;

int n,i;
P=new node;

Start=p;
cin>>n;

For(i=1;i<=n;i++) {
cin>> p -> stud-id;
cin>> p -> average;

If (i!=n) {

p2=new node;
p->next=p2;
p=p2;

} else
p2->next=NULL;

}

}

678

56.9

p

start

p2

struct node {
int stud-id;
float average;
node *next;
};
void main()
{ node *p,*p2,* start;
 int n,i;
 P=new node;
 Start=p;
 cin>>n;

For(i=1;i<=n;i++) {
 cin>> p -> stud-id;
 cin>> p -> average;
If (i!=n) {

 p2=new node;
 p->next=p2;
 p=p2;

} else
 p2->next=NULL;

 }

}

678

56.9start

123

87.5

p

453

65.4

654

88.4
null

p2p p2p

void main()
{ node *p,*p2,* start;
 int n,i;
 P=new node;
 Start=p;
 cin>>n;
For(i=1;i<=n;i++) {
 cin>> p -> stud-id;
 cin>> p -> average;
If (i!=n) {

 p2=new node;
 p->next=p2;
 p=p2;

} else
 p2->next=NULL;

}

P=start

While(p!=NULL)
 {

 cout<<p->stud-id;
 cout<<p->average;

 p=p->next;
 }

}

678

56.9start

123

87.5

p

453

65.4

654

88.4
null

p

Exercises

Q1 write a program to create a linked list of n nodes each node

containing employee information (name, salary, age). Print the

name of employee that has largest salary.

Q2 write a program to create a linked list of n nodes each node

containing student information (name, average). Print the names of

students that have averages less than 50.

Ahmed

500

Suha

750

Ali

300
Nullstart

Linked List

Implementation

A List ADT using Linked List

 Definition: A collection of nodes that form a linear list structure. Each node is a compound

object that stores an element and a reference, to call the next node or another node.

A0 A1 A2 A3fist

Structure of a node Data link

Characteristics

 Insert and delete nodes in any order

 The nodes are connected

 Each node has two components

 Information (data)

 Link to the next node (reference)

 The nodes are accessed through the links between them

first

"Ali" "Musa" "Kamel"

struct node{

char name[13];

float salary;

node*next;

};

ahmed

556

Ali

7894

suha

3333
next next nullhead

struct node{
int stud-id;
float average;
node *next;
};
void main()
{ node *p,* start;
P=new node;
Start=p;
cin>> p -> stud-id;
cin>> p -> average;
P ->next=null;
}

4556

78.88
NULL

P
start

void main()
{ node *p,*p2,* start;
P=new node;
Start=p;
cin>> p -> stud-id;
cin>> p -> average;
P ->next=null;
P2=new node;
Cin>>p2->stud-id;
Cin>>p2->average;
P2->next=null;

4556

78.8
NULL

P
start

133

56.3
NULL

p2

void main()
{ node *p,*p2,* start;
P=new node;
Start=p;
cin>> p -> stud-id;
cin>> p -> average;
P2=new node;
Cin>>p2->stud-id;
Cin>>p2->average;
P2->next=null;
P->next=p2;

4556

78.8
p2

start

133

56.3
NULL

p2

p

void main()
{ node *p,*p2,*p3,* start;
P=new node;
Start=p;
cin>> p -> stud-id;
cin>> p -> average;
P2=new node;
cin>>p2->stud-id;
cin>>p2->average;
P->next=p2;
P3=new node;
cin>>p3->stud-id;
cin>>p3->average;
P3->next=null;
P2->next=p3;

4556

78.8start

133

56.3
657

87.9
NULL

Exercise

Q1 write a program to create a linked list

of 4 nodes, each node containing book

information(title, author's name, year of

publication)

B Y

H I BA AD I L

LINKED LIST- INSERTING
A NODE

INTRODUCTION

OPERATION ON LINKED LIST

ADDING AN ELEMENT TO A LINKED
LIST

INSERT AT FIRST

INSERT AT MIDDLE

INSERT AT LAST

DISPLAY

PROCESS SUMMARY

EXERCISES

Thanks

CIRCULAR QUEUE
Data structures and algorithms

CIRCULAR QUEUE

Queue is linear list in which data can only be inserted at one end,

called the rear (back), and deleted from the other end, called the

front.

 First-In-First-Out (FIFO) concept.

CIRCULAR QUEUE

 Enqueue: add data to element in queue

Will increased value of rear by 1

 Dequeue: take data from element in queue

Will increased value of front by 1

CIRCULAR QUEUE

When the queue reaches the end of the array, it “wraps

around” and the rear of the queue starts from index 0.

The figure below demonstrates the situation.

Enqueue(“P”)

will result in …

CIRCULAR QUEUE

Dequeue() remove ‘s’

and <front> moves to the

next item

CIRCULAR QUEUE

20 45 89 10

20 45 89 10 66 90

10 66 90

Front=0 Rear=4

Front=0

Rear=6Front=4

Rear=6

CIRCULAR QUEUE

67 10 66 90

67 89 10 66 90

67 89 50 10 66 90

Rear=0 Front=3

Rear=2

Front=3Rear=1

Front=3

CIRCULAR QUEUE

89

Rear=3

Rear=3Front=2

Front=3

Queue Implementation

Queue Implementation

 Queue is linear list in which data can only be inserted at one end,

called the rear (back), and deleted from the other end, called the

front.

 First-In-First-Out (FIFO) concept.

Queue operation

 Enqueue: add data to element in queue

Will increased value of rear by 1

 Dequeue: take data from element in queue

Will increased value of front by 1

Queue Implementation

 int queue[size]

 int rear=front=-1

 int item

0 1 2 3 4

20 55 90 87 34

front rear

Queue Implementation: Enqueue

Void enqueue(int item)

{

If (rear==size-1)

cout<<“queue is full”;

else

{

Rear=rear+1;

queue[rear]=item;

}

If(front==-1)

Front=0;

}

Check the queue if it is full or not

 yes write the queue is
over flow

no then

increase the value of rear to point to
the next location

Insert the new element to the queue
where the rear pointer is pointing

20

20 43

Front=0
Rear=0

Front=0 Rear=1

Queue Implementation: Dequeue

Int dequeue()

{

If (front==-1)

cout<<“queue is empty”

return;

else

{

Item=queue[front];

If (front==rear)

{

front=-1;

Rear=-1;

}

else

Front=front+1;

}

Return(item);

}

 check the queue is empty or not

yes print queue under

flow

no then

 access the item stored where the

front pointer is pointing

 increase the value of front to

point to the next item

Return the item

20 67 89

67 89

front=0 Rear=2

front=1 Rear=2

Queue Implementation

Int dequeue()

{

If (front==-1)

cout<<“queue is empty”

return;

else

{

Item=queue[front];

If (front==rear)

{

front=-1;

Rear=-1;

}

else

Front=front+1;

}

Return(item);

}

front=-1

rear=-1

 check the queue is empty or not

yes print queue under

flow

no then

 access the item stored where the

front pointer is pointing

 increase the value of front to

point to the next item

Return the item

89

Front=3
Rear=3

Data Structures and

Algorithms
Stack Exercise

EXAMPLE: If the stack stream is MBNYRI which of the following

sequence of operation give the out NYBIR

N

B

M

B

M

Y

B

M

R

B

M

N Y R

M

UUUOUOUOOUO

UUUOUOOUUOO

B

M

Y

B

M M

N

B

M

N Y B I R

I

R

M

R

M M

×


EXAMPLE: If the stack stream is 12345 which of the

following permutation can be obtained as out put stream

4

3

2

1

3

2

1

2

1

4 2 3 1 5

2

1

4

3

1

5

3

1

3

1

24531

1

×



4

3

2

1

3

2

1

5

3

2

1

4 5 1 2 3 ×

Exercises

 Q: if the stack stream is Z W Y D K F which of the following sequence of
operations gives the output Y W D K F Z let U for pushing an item in the
stack and O for popping an item.

• UUUOOUUUOOOO

• UUUOOUOUOUOO

• UUUOOUUOUOOO

• UUUOUOOUUUOO

 Q: if the order of the stack input is 1 2 7 4 5 8 which of the following
permutation can be obtained as output stream ?

• 5 4 8 1 7 2

• 2 7 5 8 1 4

• 7 2 1 5 8 4

• 2 1 4 8 7 5

Exercises

Write a program to perform the undo and redo operations

using stacks. The program should display the following list.

1. Undo

2. Redo

3. Exit

Data Structures and

Algorithms

Stack Implementation

Introduction

 Stack is a linear list in which data items can only be accessed at one end,

called the top of the stack.

 The topmost element is the most recent element added to the stack

 Data item: Simple data types.

 Last-In–First-Out (LIFO) concept

STACK USING ARRAY-BASED IMPLEMENTATION

 int stack[size];

 int top= -1;

 int item;

8

13

20

Top=2

STACK USING ARRAY-BASED IMPLEMENTATION

 Check if the stack is full or not

yes write the stack is

over flow

no then

increase the value of top to point to

the next location

[top=top+1]

Insert the new element to the stack

Void push (int item)

{

if (top==size-1)

cout<<“the stack is over flow”<<“\n”;

else

{

top=top+1;

stack[top]=item;

}

}

55

20

top

60

55

20

top

Stack[++top]=item

STACK USING ARRAY-BASED IMPLEMENTATION

Void pop ()

{

if (top==-1)

{

cout<<“stack under flow”<<“\n”;

return

}

else

{

item=stack[top];

top=top-1;

}

return(item)

}

 check the stack is empty or not

yes print stack under

flow

no then

take the item where the top is

pointing to

decrease the value of the top to

point to the previous item

[Top =top-1]

80

20

top

20 top

Item=stack[top--]

Ex: write a program to insert 10 characters into a stack and print them in

reverse order

Void push(char item)

{

}

Char pop ()

{

}

Void main()

{ char ch; while (top>-1)

cout<< pop();

For (int i=0; i<10; i++){ }

cin>>ch;

Push(ch); }

Input:

H D S M a O t R C p

Output:
p C R t O a M S D H

EX2: write a program to insert 7 items into a stack each

item represents an employee’s salary. Print the item that its

value greater than 200

Void push (float item)

{

}

Float pop ()

{

}

Void main(){

Float salary, res;

For (int i=0; i< 7; i++){

cin<<salary;

push(salary)

}

While (top>-1){

Res= pop();

If (res>200)

Cout<<res;

}

}

Input:

500 203 102 90 70 400 80

Output:

400 203 500

Q1: write a program to manage a stack manually by displaying a menu

to select one of stack operations. For example,

1. insert an element.

2. delete an element.

3. display the stack contents.

4. exit.

Q2: Suppose an array implementation of a stack that

stores 20 integers. Write a program to print the count of

even numbers on the stack that their values greater

than 10.

Data Structures and

Algorithms

Types of Data Structures

Introduction

 Stack is a linear list in which data items can only be accessed at one end,

called the top of the stack.

 The topmost element is the most recent element added to the stack

 Data item: Simple data types.

 Last-In–First-Out (LIFO) concept.

Stack operations

Common operations:

Push – add a given element to the top of the stack.

 Pop – read the topmost element and delete it from the stack.

 Peek – return the topmost element.

 Size – return the number of elements in the stack.

Stack operations

Push - add a given element to the top of the

stack.

 If stack is full, resize or return error if not succeed

Stack operations

Pop – remove the top element of the stack
and return the element to the caller.

Will not succeed if the stack is empty - return
error

Push operation

Check if the stack is full or not

yes write the stack is over flow

no then

increase the value of top to point to the next

location

[top=top+1]

Insert the new element to the stack

Pop operation

 check the stack is empty or not

yes print stack under flow

no then

take the item where the top is pointing to

decrease the value of the top to point to the

previous item

[Top =top-1]

Example - Given stack S with list of operations as below. Illustrate the stack

operations step by step:

push (green), push (blue), pop(), push(red), pop(), pop()

groan Top=0

push

blue

groan

Top=1

push

groan

pop

Top=0

red

groan

push

Top=1

groan

pop

Pop=0

Pop

Top= -1

Example - Given stack S with list of operations as below. Illustrate the

stack operations step by step:
push (20), push (13),push (50), pop(), push(8), pop(), pop()

20 Top=0

push

13

20

Top=1

push push

Top=250

13

20

13

20

pop

Top=1

8

13

20

push

Top=2

13

20 20

pop pop

Top=1

Top=0

Exercise

Consider the following sequence of stack operations:

push (A), push(X), pop(), push(M), pop(), push(G),

pop()

what is the sequence of popped values and what is the

final state of the stack?

	Slide 1: Linked List
	Slide 2: Deletion
	Slide 3: Deletion
	Slide 4: Deletion
	Slide 5: Deletion
	Slide 6: Deletion
	Slide 7: Deletion
	Slide 8: Exercise
	Slide 1: Linked List
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Exercises
	Slide 1: Linked List
	Slide 2: A List ADT using Linked List
	Slide 3: Characteristics
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Exercise
	Slide 1: Linked List- Inserting a node
	Slide 2: Introduction
	Slide 3: Operation on Linked List
	Slide 4: Adding an Element to a Linked List
	Slide 5
	Slide 6: Insert at First
	Slide 7: Insert at Middle
	Slide 8: Insert at Last
	Slide 9: Display
	Slide 10: Process Summary
	Slide 11: Exercises
	Slide 12
	Slide 1: CIRCULAR QUEUE
	Slide 2: CIRCULAR QUEUE
	Slide 3: CIRCULAR QUEUE
	Slide 4: CIRCULAR QUEUE
	Slide 5: CIRCULAR QUEUE
	Slide 6: CIRCULAR QUEUE
	Slide 7: CIRCULAR QUEUE
	Slide 8: CIRCULAR QUEUE

