a)
$$\int \frac{2 dx}{\sqrt{3 + 4x^2}} = \int \frac{du}{\sqrt{a^2 + u^2}} \qquad u = 2x, \quad du = 2 dx, \quad a = \sqrt{3}$$
$$= \sinh^{-1} \left(\frac{u}{a}\right) + C \qquad \text{Formula from Table 7.11}$$
$$= \sinh^{-1} \left(\frac{2x}{\sqrt{3}}\right) + C.$$

Therefore,

$$\int_0^1 \frac{2 \, dx}{\sqrt{3 + 4x^2}} = \sinh^{-1} \left(\frac{2x}{\sqrt{3}} \right) \Big]_0^1 = \sinh^{-1} \left(\frac{2}{\sqrt{3}} \right) - \sinh^{-1} (0)$$
$$= \sinh^{-1} \left(\frac{2}{\sqrt{3}} \right) - 0 \approx 0.98665.$$

b)
$$\int_{1/5}^{3/13} \frac{dx}{x\sqrt{1-16x^2}} = \int_{4/5}^{12/13} \frac{du}{u\sqrt{a^2-u^2}}, \text{ where } u = 4x, du = 4 dx, a = 1$$
$$= \left[-\operatorname{sech}^{-1} u \right]_{4/5}^{12/13} = -\operatorname{sech}^{-1} \frac{12}{13} + \operatorname{sech}^{-1} \frac{4}{5}$$

c)
$$\int_{1}^{e} \frac{dx}{x\sqrt{1+(\ln x)^2}} = \int_{0}^{1} \frac{du}{\sqrt{a^2+u^2}}$$
, where $u = \ln x$, $du = \frac{1}{x} dx$, $a = 1$
= $\left[\sinh^{-1} u\right]_{0}^{1} = \sinh^{-1} 1 - \sinh^{-1} 0 = \sinh^{-1} 1$

.5 TECHNIQUES OF INTEGRATION

TABLE 8.1 Basic integration formulas

1.
$$\int k \, dx = kx + C$$
 (any number k)

12. $\int \tan x \, dx = \ln |\sec x| + C$

2. $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$ ($n \ne -1$)

13. $\int \cot x \, dx = \ln |\sin x| + C$

3. $\int \frac{dx}{x} = \ln |x| + C$

14. $\int \sec x \, dx = \ln |\sec x + \tan x| + C$

4. $\int e^x \, dx = e^x + C$

15. $\int \csc x \, dx = -\ln |\csc x + \cot x| + C$

5. $\int a^x \, dx = \frac{a^x}{\ln a} + C$ ($a > 0, a \ne 1$)

16. $\int \sinh x \, dx = \cosh x + C$

17. $\int \cosh x \, dx = \sinh x + C$

18. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$

19. $\int \csc^2 x \, dx = -\cot x + C$

10. $\int \sec x \tan x \, dx = \sec x + C$

21. $\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1}\left(\frac{x}{a}\right) + C$ ($a > 0$)

11. $\int \csc x \cot x \, dx = -\csc x + C$

22. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1}\left(\frac{x}{a}\right) + C$ ($x > a > 0$)

5.1 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form: $\int f(x)g(x) dx.$

$$\int u\,dv = uv - \int v\,du$$

EXAMPLE 1 Find

$$\int x \cos x \, dx.$$

Solution We use the formula $\int u \, dv = uv - \int v \, du$ with

$$u = x$$
, $dv = \cos x \, dx$,
 $du = dx$, $v = \sin x$. Simplest antiderivative of $\cos x$

Then

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

EXAMPLE 2 Find

$$\int \ln x \, dx.$$

Solution Since $\int \ln x \, dx$ can be written as $\int \ln x \cdot 1 \, dx$, we use the formula $\int u \, dv = uv - \int v \, du$ with

$$u=\ln x$$
 Simplifies when differentiated $dv=dx$ Easy to integrate $du=\frac{1}{x}dx$, Simplest antiderivative

Then

$$\int \ln x \, dx = x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - \int dx = x \ln x - x + C.$$

Remark: Sometimes we have to use integration by parts more than once as follows:

EXAMPLE 3 Evaluate

$$\int x^2 e^x \, dx.$$

Solution With $u = x^2$, $dv = e^x dx$, du = 2x dx, and $v = e^x$, we have

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx.$$

The new integral is less complicated than the original because the exponent on x is reduced by one. To evaluate the integral on the right, we integrate by parts again with u = x, $dv = e^x dx$. Then du = dx, $v = e^x$, and

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C.$$

Using this last evaluation, we then obtain

$$\int x^2 e^x \, dx = x^2 e^x - 2 \int x e^x \, dx$$
$$= x^2 e^x - 2x e^x + 2e^x + C.$$

EXAMPLE 4 Evaluate

$$\int e^x \cos x \, dx.$$

Solution Let $u = e^x$ and $dv = \cos x \, dx$. Then $du = e^x \, dx$, $v = \sin x$, and

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx.$$

The second integral is like the first except that it has $\sin x$ in place of $\cos x$. To evaluate it, we use integration by parts with

$$u = e^x$$
, $dv = \sin x \, dx$, $v = -\cos x$, $du = e^x \, dx$.

Then

$$\int e^x \cos x \, dx = e^x \sin x - \left(-e^x \cos x - \int (-\cos x)(e^x \, dx) \right)$$
$$= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx.$$

$$2\int e^x \cos x \, dx = e^x \sin x + e^x \cos x + C_1.$$

Dividing by 2 and renaming the constant of integration give

$$\int e^x \cos x \, dx = \frac{e^x \sin x + e^x \cos x}{2} + C.$$

Evaluating Definite Integrals by Parts:

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x) \Big]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

EXAMPLE 6 Find the area of the region bounded by the curve $y = xe^{-x}$ and the x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

$$\int_0^4 xe^{-x}\,dx.$$

Let u = x, $dv = e^{-x} dx$, $v = -e^{-x}$, and du = dx. Then,

$$\int_0^4 xe^{-x} dx = -xe^{-x}\Big]_0^4 - \int_0^4 (-e^{-x}) dx$$

$$= [-4e^{-4} - (0)] + \int_0^4 e^{-x} dx$$

$$= -4e^{-4} - e^{-x}\Big]_0^4$$

$$= -4e^{-4} - e^{-4} - (-e^0) = 1 - 5e^{-4} \approx 0.91.$$

Tabular Integration

EXAMPLE 7 Evaluate

$$\int x^2 e^x \, dx.$$

Solution With $f(x) = x^2$ and $g(x) = e^x$, we list:

d $x^{2} \qquad (+) \qquad e^{x}$ $2x \qquad (-) \qquad e^{x}$ $2 \qquad (+) \qquad e^{x}$ $0 \qquad e^{x}$

Then

$$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C.$$

EXAMPLE 8 Evaluate

$$\int x^3 \sin x \, dx.$$

Solution With $f(x) = x^3$ and $g(x) = \sin x$, we list:

f(x) and its derivatives		g(x) and its integrals
<i>x</i> ³	(+)	$\sin x$
$3x^2$	(-)	$-\cos x$
6 <i>x</i>	(+)	$-\sin x$
6	(-)	$\cos x$
0		$\sin x$

5.2 Trigonometric Integrals

$$\int \sec^2 x \, dx = \tan x + C.$$

Products of Powers of Sines and Cosines

We begin with integrals of the form:

$$\int \sin^m x \cos^n x \, dx,$$

where m and n are nonnegative integers (positive or zero). We can divide the appropriate substitution into three cases according to m and n being odd or even.