a) f 2 dx = -/ du u 2 {1 2 d ] 3
V3 + 4x? Va? + u? I

) Formula from Table 7.11

= sinh
= sinh™ ( L ) +C
V3
Therefore,
1 1
2dx . _1(2x ]_._1(2) 2 gus
———= gl = sinh™ | —= | — sinh™' (0)
0 V3 + ax? V3/l V3
i 2
= sinh™! (—) — 0 = 0.98665.
V3
b) »3/13 12/13 _
j m j“ thcr&:u—-h du=4dx.a=1
= [—sech™ u] ;%" = — sech™ 12 + sech™ £

«1
C) ‘j = ‘J du = — l 4 =
i = +”n - Y e .whereu=Inx.du = ; dx.a=1

= [sinh~' u] ; = sinh™" | — sinh™' 0 = sinh™" 1

.5 TECHNIQUES OF INTEGRATION

TABLE 8.1 Basic integration formulas

1. fkdx =k + C  (any number k) 12. /wn.rdx = In|secx| + C
n+1
2 fx"dr = :+ +C (m#-1) 13. fcol.\‘dit = In |sinx| + C
3. [ =In|x] +C 14. /secxdx = In |secx + tanx| + C
4, ] =e*+C 15. fcscxdx = —In|cscx + cotx| + C
5. / = m+ C (@a>0a#1) 16. /sinhxdx = coshx + C
6. fsmxdx = —cosx + C 17. fcoshxd.t = sinhx + C
1. fcosx dx = sinx + C 18. e sin ! (i) +C
a® = 32 a
8. /wc xdx = tanx + C 19. fﬁ=%taﬂ-1 (%) +C
9. csc’xdx = —cotx + C dx _ 1 4
/ 20. ﬁ—asecla + G
xVx*—a
= -+ R
10. /sec.!.tanuh secx + C 21 dx —sinn ' (2)+ ¢ (@>0)
Va® + x? 8
11. txdx = —cscx + C :
/Cb“m)' ¥ e 22, /%= cosh™ (} +C (x>a>0)
x‘=a
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5.1 Integration by Parts
Integration by parts is a technique for simplifying integrals of the form: / F(x)g(x) dx.

/udvzuv—/vdu

EXAMPLE 1 Find
f X cosxdx.
Solution  We use the formula /udv = yv — /va’n with

u=x, dv = cosxdx,
du

dx, v = sinux. Simplest antiderivative of cos x

Then

/.\' cosxdx = xsinx — /sin xdx = xsinx + cosx + C.

EXAMPLE 2  Find

/ Inx dx.

Solution Since [ Inxdx can be written as [ Inx-ldx, we use the formula
Judv = uv — [ vduwith

u=Inx Simplifies when differentiated dv = dx Easy to integrate
_ 1 , o
du = ?d.l', v = X. Simplest antiderivative
Then

/ln.rdt =xlnx — /.1"%(!4‘ = xInx -/dx =xlnx—-x+ C.

Remark: Sometimes we have to use integration by parts more than once as follows:
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EXAMPLE 3 Evaluate

/ x2e* dx.

Solution Withu = x% dv = e*dx, du = 2xdx,and v = e*, we have

fxzexdx = x%e* — 2] xe dx.

The new integral is less complicated than the original because the exponent on x is re-
duced by one. To evaluate the integral on the right, we integrate by parts again with
u = x,dv = e*dx.Thendu = dx,v = e*, and

/.rexdx = xe* — fe"dx =xe* —e* + C.

Using this last evaluation, we then obtain

/.xze"dx = x2e* — 2/ xe* dx

= x2Ze* = 2xe* + 2¢* + C. a

EXAMPLE 4 Evaluate

f e*cosxdx.

Solution Letw = e*anddv = cosxdx.Thendu = e*dx, v = sinx, and
fe"cosxdx = e*sinx — /e“r sinx dx.
The second integral is like the first except that it has sin x in place of cos x. To evaluate it,

we use integration by parts with

u=e*, dv = sinx dx, v = —COSX, du = e dx.

f e*cosxdx

Then

e*sinx — (—e“'cosx —/(—cosx)(eJr dx))

= e*sinx + e*cosx — fe" cosx dx.
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2[ e*cosxdx = e*sinx + e*cosx + C.

Dividing by 2 and renaming the constant of integration give

b . x
e’ sinx + e cosx
/ e‘cosxdx = +:C

2
Evaluating Definite Integrals by Parts:

b b
/ f(x)g'(x) dx = f(x)g(x)]fj = / f'(x)g(x) dx

EXAMPLE 6  Find the area of the region bounded by the curve y = xe™ and the x-axis
fromx = Otox = 4.

Solution  The region is shaded in Figure 8.1. Its area is

4
/ xe “dx.
0

Letu = x,dv = e *dx,v = —e™, and du = dx. Then,

4 "4
/ xe rdx = —xe_x]g —/ (—e™) dx
0 0

4
= [—4e™" = (0)] +] e™ dx
0

4
0

= —4et —et = (=% =1 -5~ 0091. 1

= —4e™* — e'x]

Tabular Integration

EXAMPLE 7  Evaluate

f x%e* dx.

Solution With f(x) = v and g(x) = e, we list:

; J
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/ x2e* dx = x%e* — 2xe* + 2¢* + C.

EXAMPLE 8 Evaluate

/ x? sin x dx.

Solution With f(x) = x* and g(x) = sinx, we list:

f(x) and its derivatives g(x) and its integrals

b &_ sin x
3x2 (=) —COS X
6x $ —sinx
6 % cos X
0 \‘ sin x

/.\'3 sinxdx = —x* cosx + 3x%sinx + 6xcosx — 6sinx + C.

S’

5.2  Trigonometric Integrals

/ sec’xdx = tanx + C.

Products of Powers of Sines and Cosines

We begin with integrals of the form:

/ sin” x cos” x dx,
where m and n are nonnegative integers (positive or zero). We can divide the appropriate substitution

into three cases according to m and » being odd or even.
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