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Abstract 
This study aimed to isolate and identify Cryptococcus species from three distinct sources: sputum samples 
of pigeon fanciers, dried pigeon droppings, and eucalyptus tree leaves. A total of 150 specimens were 
collected over a two-month period, comprising 50 samples each from human sputum, pigeon droppings 
collected across various areas of Baghdad, and eucalyptus leaves obtained from the Baghdad College of 
Veterinary Medicine. All samples were cultured on Sabouraud dextrose agar supplemented with 
chloramphenicol and incubated at 25°C for 2–3 days. 

From the initial cultures, 20 isolates presumptively identified as Cryptococcus spp. were obtained: 6 isolates 
(12%) from human sputum, 9 isolates (18%) from pigeon droppings, and 5 isolates (10%) from 
eucalyptus leaves, giving an overall recovery rate of 13.3%. Molecular identification using PCR was 
employed to detect two key virulence genes: CAP64 (associated with capsule formation) and LAC1 
(involved in melanin production). These genes were detected in 13 out of 14 confirmed Cryptococcus 
isolates (92.85%). Specifically, 75% of C. neoformans isolates from human samples carried these genes, 
while the C. albidus isolate lacked them. All Cryptococcus isolates from pigeon droppings and eucalyptus 
leaves tested positive for both virulence genes (100%). 
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Introduction 

Opportunistic yeasts and filamentous fungi are responsible for three primary forms of mycotic infections: 
(1) superficial and cutaneous, (2) subcutaneous, and (3) systemic or deep mycoses (Rathore, et al., 2022; 
Zhao, et al., 2023; Kamal, & Al-Hadad, 2023; Mohammed, & Kamal, 2025). Numerous cases of 
cryptococcosis, candidiasis, and aspergillosis have been documented across the Americas, Europe, and 
Africa, confirming their global occurrence (De Hoog, et al., 2005; Jassem, et al., 2013; Mahmood, 2015). 
Since the 1980s, the increasing number of individuals with weakened immune systems has made 
opportunistic fungal infections a significant public health challenge (Francisco, de Jong, & Hagen, 2021; 
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Mukaremera, 2023; Mohammed, & Al-Gburi, 2023; Khalaf, & Rejah, 2024). The mortality rates 
associated with the three leading invasive fungal pathogens—Aspergillus, Candida, and Cryptococcus—range 
from 10% to as high as 90% (Steinbach, & Stevens, 2003; Filioti, Spiroglou, & Roilides, 2007; Longley, 
et al., 2008; Park, et al., 2009; Kadim, et al., 2019). 

Cryptococcus, a fungal pathogen, causes cryptococcosis, particularly among immunocompromised 
individuals. The two main species implicated in human disease are Cryptococcus neoformans and Cryptococcus 
gattii (Morales-López, & Garcia-Effron, 2021; Black, et al., 2024). These organisms are found in various 
environmental reservoirs worldwide, with typical exposure occurring through contact with soil or avian 
droppings (Lin, Shiau, & Fang, 2015; Refai, El-Hariri, & Alarousy, 2017). Morphologically, these 
pathogens resemble encapsulated yeasts and are capable of causing serious infections (Diniz-Lima, et al., 
2022; Ristow, et al., 2023; Khalaf, & Rejah, 2024). Individuals with underlying conditions such as AIDS, 
diabetes, chronic hepatic or renal illnesses, prolonged corticosteroid use, or those who have undergone 
organ transplantation are especially at risk (Diniz-Lima, et al., 2022; Kamal, & Al-haddad, 2022). 

Virulence factors are broadly defined as components or characteristics of a pathogen that contribute to 
host damage (Chen, et al., 2022; Montoya, Magwene, & Perfect, 2021; Denham, et al., 2022). C. neoformans 
is known to produce a variety of virulence-associated enzymes, including proteases and lipases—similar 
to those produced by other microbial pathogens such as bacteria and fungi (Ghanem, & Sivasubramanian, 
2021; Alegre-González, et al., 2021; Poplin, et al., 2024). Additionally, this species secretes urease, an 
enzyme involved in nitrogen metabolism by catalysing the breakdown of urea into CO₂ and ammonia. 
This enzyme plays a critical role in pathogenesis and is used as a diagnostic indicator for cryptococcosis 
(Rizzo, et al., 2021; Yu, et al., 2021; Yang, et al., 2022; Mohammed, & Kamal, 2025). 

Among the most studied virulence factors in C. neoformans are its polysaccharide capsule and melanin 
pigment. These two components are not only vital for the pathogen’s virulence but also provide 
protection against host immune responses (Baddley, et al., 2021; Wang, et al., 2022; Huang, et al., 2024). 

 
Methodology 

LAC1 Gene Primers 

Table 1. LAC1 Gene Primers Used in the Study of Cryptococcus spp. 
Primer Sequence Primer sequence Tm 

(ᵒC) 
GC% Size of 

Product 
(bp) 

 
 
 
Musavinasab-
Mobarakeh, 
Shams-
Ghahfarokhi, 
& Razzaghi-
Abyaneh, 
(2021) 

LAC1 
C. neoformans 

F 5′- AGAAGGGAAGGAAGGTGATG -3′ 60.3 50 % 480bp 
R 5′ TATACCTCACAACCGCCAAT -3′ 57.8 41 % 

LAC1 
C. gattii 

F 5′- AACATGTTCCCTGGGCCTGTG -3′ 60.3 50 % 469bp 
R 5′ ATGAGAATTGAATCGCCTTGT -3′ 57.8 41 % 

LAC1 
C. albidus 

F 5′- AGAAGGGAAGGAAGGTGATG -3′ 60.3 50 % 480bp 
R 5′ TATACCTCACAACCGCCAAT -3′ 57.8 41 % 

 
CAP64 Gene Primers 

Table 2. CAP64 Gene Primers Used in the Study of Cryptococcus spp. 
Primer Sequence Primer sequence Tm 

(ᵒC) 
GC% Size of 

Product 
(bp) 

 
 
 
Imanishi-
Shimizu, 

CAP64 
C. neoformans 

F 5′- CTCTACGTCGAGCAAGTCAAG -3′ 60.3 50 % 559bp 
R 5′ TCCGCTGCACAAGTGATACCC -3′ 57.8 41 % 
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CAP64 
C. gattii 

F 5′- 
CTGATCACACCGATCTCGTCATTCT  -
3′ 

60.3 50 % 833bp et al. 
(2021) 

R 5′ GATCAGGCCTCACAAGGAT  -3′ 57.8 41 % 
CAP64 
C. albidus 

F 5′- CTCTACGTCGAGCAAGTCAAG -3′ 60.3 50 % 559bp 
R 5′ TCCGCTGCACAAGTGATACCC -3′ 57.8 41 % 

 
Preparation of Culture Media 

Sabouraud Dextrose Agar (SDA): 

To prepare the medium, 65 grams of SDA powder were dissolved in one litre of distilled water. 
Chloramphenicol was added at a concentration of 0.05 g/mL to inhibit bacterial contamination. The 
mixture was stirred continuously while heating and sterilised in an autoclave at 121°C and 15 psi for 15 
minutes. After cooling to approximately 50°C, the sterile medium was poured into petri dishes and 
incubated at 37°C for 24 hours before storage at 4°C. 

Samples Collection 

Human Sputum Samples:  

Sputum samples were obtained from pigeon breeders of different age groups. The samples were 
transported aseptically to the Mycology Laboratory of the Zoonotic Disease Research Unit. Each sample 
was streaked onto SDA supplemented with chloramphenicol (Staib, et al., 1987). Suspected yeast colonies 
were stained with India ink and lactophenol cotton blue, followed by a urease test. Further identification 
was confirmed using specific media. 

Pigeon Droppings: 

Fifty samples of pigeon droppings were collected from various pigeon shelters and placed in sterile plastic 
bags. Approximately 20–30 grams of each sample were weighed and diluted in saline (0.9%) containing 
200 mg/L chloramphenicol to achieve a 1:10 dilution. The mixture was shaken for 30 minutes and left 
to settle. From the supernatant, 0.5 mL aliquots were streaked onto SDA. Confirmation involved staining 
(India ink, lactophenol cotton blue), urease testing, and growth on BSA and CDA media (Zarrin, Met al., 
2010).  

Eucalyptus Leaves: 

Fifty eucalyptus leaf samples were collected from locations in Baghdad and placed in sterile plastic bags. 
Samples were transported on ice to the Zoonotic Diseases Unit, College of Veterinary Medicine. Two 
grams of leaves were rinsed in sterile water and then immersed in 20 mL of sterile saline with 10 mg/mL 
chloramphenicol. The mixture was homogenised for four minutes, then left at room temperature for 30 
minutes. A loopful of the supernatant was streaked onto SDA plates, which were incubated at 30°C for 
48 hours (Elhariri, et al., 2016). 

 

Results and Discussion  
Colonies suspected to be Cryptococcus species were observed on Sabouraud Dextrose Agar (SDA). These 
isolates displayed a creamy texture, convex elevation, and a glistening appearance, often exhibiting a pale 
off-white to beige hue. After incubation at 25°C and 30°C for 2–3 days, the mucoid appearance of the 
colonies became evident, which is attributed to the production of a polysaccharide capsule, as illustrated 
in Figure 1. 

These observations are consistent with earlier reports by Washington, et al. (2024) and Khanal, Sharma, 
& Deb (2002), who noted that mucoid colonies are often the first indicator of Cryptococcus presence. The 
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colonies are typically fast-growing, soft, glistening, mucoid or creamy in appearance, smooth, convex, 
and slightly pink, tan, or yellowish-brown on solid media—a finding further supported by Washington, 
et al. (2024); Okagaki, et al. (2010) and Firacative, Trilles, & Meyer (2021). Isolates from various sources 
(human, pigeon droppings, and eucalyptus leaves) shared morphological traits: spherical, encapsulated, 
and non-myceliated cells. Notably, C. neoformans is characterised by a distinct mucinous capsule, especially 
when incubated at 30°C, which also supports compact basidiospore formation as noted by Karkowska-
Kuleta, Rapala-Kozik, & Kozik (2009) and Wang, et al. (2024). 

 

 
Figure 1. Suspected Cryptococcus spp. Appeared  

within 2-3 Days of Incubation in 25°C on SDA 

 

Table 3. Primary Isolation of Cryptococcus sp. from Human and Natural Habitat 
Sources of sample No. of samples Primary isolation in lab 

No. of +ve % 
Human 50 6 12 
Droppings 50 9 18 
Eucalyptus leaves 50 5 10 
Total 150 20 13.3 

 

Table 4. Positive Results of Suspected Cryptococcus spp. Isolates in Stains, 
Selective Differential Media and Biochemical Test 

Sources of 
sample 

Stains Selective differential media Biochemical 
test 

LPCB INDIA 
INK 

BSA CDA BHIA with 
cycloheximide 

BHIA with 
methyldopa 

EA ELA Urease test 

Human (6) 6 +ve 3 +ve 3 +ve 4 +ve _ 6 +ve 5 +ve 6 +ve 6 +ve 
Droppings 
(9) 

9 +ve 6 +ve 6 +ve 6 +ve _ 9 +ve 9 +ve 9 +ve 4 +ve 

Eucalyptus 
leaves (5) 

5 +ve _ _ 5 +ve _ 5 +ve 5 +ve 5 +ve 4 +ve 

 

Molecular Detection of Virulence Factors in Cryptococcus spp. 

Out of 14 suspected Cryptococcus spp. isolates—four from humans, six from pigeon droppings, and four 
from eucalyptus leaves—a conventional PCR assay was conducted to confirm molecular identity and 
detect two key virulence genes: CAP64 (responsible for capsule formation) and LAC1 (involved in 
melanin production). 
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Table 5. Virulence gene in Cryptococcus spp. 
Sources of sample Spp. and NO. of positive 

isolates 
Gene 
CAP64 LAC1 
NO. % NO. % 

Human sputum C. neoformans (3) 3 100 3 100 
C. albidus (1) 0 0 0 0 

Pigeon dropping C. neoformans (6) 6 100 6 100 
Eucalyptus leaves C. gattii (4) 4 100 4 100 
Total 14 13 92.85 13 92.85 

 

 
Figure 2. Gel Electrophoresis for PCR Product of LAC1 Gene, (Agarose 2%, at 70 volts, 

60min.), M: DNA ladder (10000-100bp).Visualized under U.V light after Staining with Red Safe, 
(1-6) Represent C. neoformans from Pigeon Dropping, (7-9) C. neoformans from Human 

Sputum, C. albidus (14) from Human Sputum was Lack this Gene have Product size 469bp,  
(10-13) C. gattii from Eucalyptus Leaves with Size of Product 480bp 
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PCR results revealed the presence of both CAP64 and LAC1 genes in 13 out of the 14 isolates, with C. 
albidus being the only isolate lacking both genes (Table 5). These findings corroborate previous studies 
(Ito-Kuwa, et al., 2007; Rodrigues, et al., 2015), which documented the detection of the capsule-encoding 
CAP64 gene and the LAC1 gene responsible for melanin synthesis in C. neoformans and C. gattii isolates 
from similar environmental and clinical sources (Meyer, et al., 2009; Specht, et al., 2024; Khalaf, & Rejah, 
2024). 

The LAC1 gene, which governs melanin pigment production—a known virulence factor—was detected 
in all C. neoformans and C. gattii isolates but absent in C. albidus, as also reported by Kassi, et al. (2016); 
Samarasinghe, et al. (2018) and Wang, et al. (2022). PCR assays identified LAC1 at 469 bp in C. neoformans 
and 480 bp in C. gattii, which aligns with the findings of Ito-Kuwa, et al. (2007) and Kadim, et al. (2019). 

 

 
Figure 3. Gel Electrophoresis for PCR Product of (CAP64), (Agarose 2%, at 70 volts, 60min.), 
M: DNA Ladder (10000-100bp).Visualized under U.V Light after Staining with Red Safe, (1-6) 
Represent C. neoformans from Pigeon Dropping, (7-9) C. neoformans from Human Sputum, 

C. albidus (14) from Human Sputum was Lack this Gene have Product Size 833bp, (10-13)  
C. gattii from Eucalyptus Leaves Size of Product 559bp. 
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Similarly, the CAP64 gene, integral to the formation of the polysaccharide capsule and directly associated 
with the pathogenicity of Cryptococcus spp., was present in all C. neoformans and C. gattii isolates but absent 
in C. albidus (Figure 3). These findings are supported by Wilder, et al. (2002); Okabayashi, Hasegawa, & 
Watanabe (2007) and Imanishi-Shimizu, et al. (2021), who highlighted the role of CAP64 in virulence. 
However, these results contrast with those of Okabayashi, et al. (2005), who reported the lack of CAP64 
gene expression in some C. neoformans isolates. PCR amplification of CAP64 showed band sizes of 833 
bp in C. neoformans and 559 bp in C. gattii, while C. albidus exhibited no amplification. 

 

Conclusions 
CAP64 and LAC1 virulence genes were detected in all clinical and environmental isolates of C. neoformans 
and C. gattii using conventional PCR, confirming their pathogenic potential. In contrast, C. albidus lacked 
both genes, suggesting a lower virulence profile. 

Phylogenetic analysis demonstrated a 99% genetic similarity between the studied isolates of C. neoformans 
and C. gattii and their respective reference strains. C. albidus also showed a perfect match with known 
reference sequences, indicating accurate species identification. 
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