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Abstract: Decentralized deep learning model training among dispersed devices is made possible by Federated 

Learning (FL). The MNIST and Fashion MNIST (FMNIST) datasets are used in this paper to demonstrate a privacy-

preserving Federated Learning (FL) framework combined with user-level Differential Privacy (DP) for decentralized 

model training. The data is distributed across 10 clients, each training a Stacked Convolutional Neural Network (CNN) 

locally. Training gradients with calibrated noise guarantees differential privacy. The models are aggregated via 

Federated Averaging after local training, when encrypted updates are relayed to a central server. The procedure is 

iterated until the global model reaches a convergence point. Metrics for recall, accuracy, and precision are used to 

assess the final model. Outcomes show that a proposed model achieves 85.73% accuracy on MNIST and 67.99% on 

FMNIST, outperforming baseline models like VGG, ResNet, and traditional CNNs. The study demonstrates that the 

Stacked CNN architecture effectively balances performance and privacy, making it suitable for deployment in privacy-

sensitive, distributed environments. The framework provides valuable insights into enhancing model utility while 

maintaining robust privacy protections in federated settings. 
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1. Introduction 

In recent years, DL represents significant success 

in a variety of industries, including healthcare, 

marketing, transportation, and others [1]. Applying a 

latest development in other areas of computer vision 

to image analysis that relies on deep learning is not 

without its constraints. This is due to the fact that 

obtaining diagnostically useful levels of accuracy in 

several technological applications requires enormous 

volumes of data. Acquiring such datasets, however, 

presents a challenge in the medical industry due to the 

requirement to minimize data collection and sharing 

while still upholding patient privacy [2-4]. The 

privacy of users in DL must thus be ensured. 

Federated learning satisfies the specific requirements 

for data privacy protection at the user level by 

providing a distributed learning framework that 

enables users to train models while keeping the 

original data [5]. A common method for enhancing 

privacy protection is differential privacy, which is a 

classic data desensitization technique [6]. 

One practical solution is the rise of privacy-

enhancing technologies, which make it possible to 

draw inferences from sensitive data without 

compromising the privacy of the people concerned. 

The best chance for promoting ethical and 

responsible data interchange has never been 

presented by these technologies [7-9]. A new 

technology called federated learning (FL) trains ML 

models across several decentralized systems. 

Through the use of a server, it allows local devices to 

pool their computations and develop a model together. 

FL is a novel approach that aims to centralize user 

device training while protecting the privacy of the 

underlying data. This greatly decreases the likelihood 

of data breaches by doing away with the need to 

transmit raw data to a single repository. Also, to make 
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sure that a training process is private, a central server 

handles all of a model change, both transmitting and 

receiving them from the devices [10]. 

Another approach that might enhance privacy 

without compromising accuracy is DP, which masks 

sensitive information by adding noise to a data. One 

of a most basic ML strategies for keeping data secure 

while also allowing individuals their privacy is DP. 

The fact that it safeguards user-specific data, 

guarantees anonymity in outputs, and improves 

privacy without depending on trust assumptions is its 

strongest strength [8]. Recently, FL and DP have 

become more popular, particularly in a healthcare and 

IoT sectors. These combined tactics aim to strike a 

balance among privacy protection and effective 

training. However, maintaining model privacy 

without compromising accuracy continues to be an 

ongoing challenge. Adding noise to the training 

process and consistently trusting the central server 

were common practices in earlier efforts to apply DP 

to FL. 

1.1 Motivation and contribution of the paper 

The motivation behind this research lies in 

addressing the growing concern of data privacy in 

machine learning, particularly in decentralized 

settings. As machine learning models increasingly 

rely on distributed data sources, traditional 

centralized approaches pose significant risks to 

sensitive information. This study’s significance is in 

its innovative application of FL combined with DP to 

safeguard individual data while enabling 

collaborative model training. By leveraging Stacked 

Convolutional Neural Networks (CNNs) within this 

framework, the research demonstrates a viable 

method to improve privacy protection without 

compromising model performance. This approach 

not only advances the field of privacy-preserving ML 

but also has practical implications for industries 

requiring secure and effective data utilization, such as 

finance, healthcare, and beyond. The following 

research contribution of this work is: 

 To demonstrate federated learning with 

differential privacy: This research introduces a 

FL framework integrated with DP mechanisms, 

showcasing how decentralized model training 

can be enhanced with privacy-preserving 

techniques using Stacked Convolutional Neural 

Networks (CNNs). 

 To enhance privacy through differential privacy 

mechanisms: The study employs differential 

privacy methods, specifically adding noise to 

gradients using Laplace and Gaussian 

mechanisms, to ensure robust protection of 

individual data privacy while maintaining the 

model's effectiveness. 

 To optimize model training with stacked CNN 

architecture: By using a Stacked CNN model, 

this research highlights improvements in 

accuracy and loss metrics compared to baseline 

models, demonstrating the effectiveness of deep 

learning architectures in handling privacy-

preserving federated learning scenarios. 

 To Compare Performance on MNIST and 

Fashion MNIST Datasets: This study sheds light 

on how well the FL-DP method works for 

various image classification tasks by comparing 

the model's performance on the MNIST and 

Fashion MNIST datasets. 

1.2 Structure of the paper 

A following paper structure as: Section I provide 

the overview of topic with motivation and 

contribution. Then Section II discussed some existing 

work on this research area with summary table. 

Section III described the proposed methodology with 

each step and each technique. Section IV provide the 

experimental results of proposed work with 

comparative analysis in existing technique. Section V 

concludes the article and discusses its future 

directions. 

2. Literature review 

The combination of DL with DP for image 

classification is the subject of many research 

initiatives aimed at improving the security of big data. 

DL and DP federated learning have been the subject 

of several studies that compare and contrast their 

respective efficacy.  

In [11], propose a gradient recovery attack against 

differential privacy-preserving models. Adversaries 

can gather a small set of differential privacy 

perturbed and original gradients and leverage a GAN 

network to train a gradient recovery model, which 

can recover the perturbed gradient to an 

approximately original state. Experiments 

demonstrate that the proposed gradient recovery 

attack achieves promising results when using 

commonly used differential privacy budgets (from 1 

to 7). When the privacy budget is 7, the recovered 

gradient and the original gradient have a similarity of 

94-99% in gradient inversion attack. 

In [12], presents DP Patch, a new framework that 

attempts to solve these privacy issues in image data 

by focussing on potentially sensitive elements within 

the picture instead of treating the whole image as 

sensitive. This method produces more useful, 

privacy-preserving photos than DP images. They 



Received:  June 15, 2025.     Revised: August 9, 2025.                                                                                                     341 

International Journal of Intelligent Engineering and Systems, Vol.18, No.9, 2025           DOI: 10.22266/ijies2025.1031.21 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

compare the custom model's performance to that of 

state-of-the-art alternatives and do experimental 

assessments to determine how well the produced 

privacy-preserving photos meet criteria. 

In [13], improving the hyper-parameters while 

keeping accuracy and privacy in mind is essential for 

building differentially private models in ML. This 

study investigates the best designs and trade-offs for 

private learning by investigating the outcomes of 

hyper-parameter tuning and the Pareto frontier 

technique, with the goal of avoiding this issue. The 

research improves knowledge of privacy concerns 

and provides data that may guide decisions about 

real-world applications and the creation of efficient 

training methods [38]. 

In [14], conduct the first thorough, principled 

measurement study to find out when a pre-trained 

encoder may overcome the limitations of secure or 

privacy-preserving Supervised Learning techniques. 

Their main results show that a pre-trained encoder 

greatly enhances 1) accuracy in the absence of attacks 

and 2) assessment of protection against Data 

Poisoning and backdoor attacks in cutting-edge 

secure learning algorithms (such as KNN and 

bagging) 2) verification of security against 

adversarial examples in randomized smoothing 

without compromising accuracy in the absence of 

attacks and 3) accuracy of differentially private 

classifiers. 

Create a unique optimization method named 

DPAGDCNN for convolution neural networks that 

works with DP techniques in order to secure the 

privacy of DL models [15]. Specifically, instead of 

allocating a set privacy budget every iteration, 

DPAGD-CNN distributes privacy budgets more 

wisely in every iteration. They demonstrate 

theoretically that the method may safeguard training 

data privacy while attaining improved classification 

accuracy in the MNIST and CIFAR-10 datasets while 

maintaining a low privacy budget. 

In [16], study presents a novel hybrid approach 

that HDP-FL to tackle the basic problem of finding a 

balance among data privacy and value in distributed 

learning. The results of this hybrid approach's careful 

testing on the EMNIST and CIFAR-10 datasets show 

significant improvements over traditional federated 

learning methods. Specifically, it achieves an 

impressive accuracy of 96.29% for EMNIST and 

82.88% for CIFAR-10. 

In [17], provide a federated learning architecture 

that uses LDP to accommodate customers' unique 

privacy needs. Model perturbation strategies are 

planned separately for IID and non-IID datasets, as 

well as for both kinds of datasets. They provide a 

weighted average technique and a probability-based 

selection method for aggregating models.  Lessening 

the effect of privacy-conscious customers with 

minimal privacy expenditures on the federated model 

is the main notion. Experiments on three well-known 

datasets (MNIST, Fashion-MNIST, and forest cover 

types) show that the proposed aggregation techniques 

beat the old arithmetic average approach in situations 

where privacy is being protected. 

In [33], research explores efficient Anomaly 

Detection techniques for IIoT devices because device 

irregularities generate substantial security challenges 

along with privacy threats. A hierarchical federated 

learning system implements deep reinforcement 

learning to construct one common anomaly detection 

model for all users according to the authors. The 

system empowers several devices to run individual 

models on their local systems prior to swapping 

combined findings instead of distributing raw data 

fields thus enhancing data privacy. Two detection 

metrics enhance accuracy by assessing privacy 

leakage level and action interconnectivity within the 

system. The proposed method provides experimental 

data illustrating fast system operations and quick 

responsiveness together with robust anomaly 

detection functionality for various IIoT applications.  

In [34] A 5G-powered Intelligent Transportation 

System operates by integrating multiple Blockchain 

technologies which use AI-enabled trust evaluation 

hierarchies. 

The paper creates BHTE (Blockchain-based 

Hierarchical Trust Evaluation) that aims to 

strengthen trust reliability within 5G-enabled 

Intelligent Transportation Systems (ITS). Different 

blockchain technologies link with federated deep 

learning methods to assess trustworthiness in users 

and task distributors of ITS through a blockchain-

based system. Federated learning lets the system 

assess trust levels by maintaining user privacy 

through keeping private data inaccessible. The 

blockchain hierarchical system maintains trust 

information through an infrastructure that offers 

traceable and transparent data storage capabilities. 

The detailed experimental evaluations have proved 

that BHTE can determine trustworthy assessments 

while exhibiting quick processing time and 

maintaining brief system response delays.  

[35] The work presents a Federated 

Reinforcement Learning solution which ensures both 

Quality of Service requirements and routing privacy 

protection in 5G-Enabled IIoT environments. 

The Federated Reinforcement Learning 

optimization framework develops a solution to 

improve 5G-enabled IIoT routing mechanisms by 

integrating QoS and privacy features. The new  
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Table 1. Related work summary for data privacy using different tool and techniques 

Refere

nce 
Methodology Results/Advantage 

Limitations/Research 

Gaps 
Future Work 

[11] Utilizes GAN to train a 

model that recovers 

perturbed gradients to near-

original states in differential 

privacy-preserving models. 

Achieved 94-99% similarity 

between recovered and 

original gradients when 

privacy budget is 7. 

Limited to specific DP 

budgets; applicability 

in real-world scenarios 

may be constrained by 

computational 

complexity. 

Extend to broader 

datasets and more 

complex models; 

explore defenses 

against such attacks. 

[12] Focuses on protecting 

specific sensitive objects 

within an image rather than 

the entire image, enhancing 

utility while preserving 

privacy. 

Produced privacy-

preserving images with 

higher utility compared to 

standard DP methods. 

May not generalize 

well to all image types; 

requires precise 

identification of 

sensitive regions. 

Expand framework 

to include more 

sophisticated object 

detection 

mechanisms and 

evaluate across 

diverse datasets. 

[13] Analyzes hyper-parameter 

tuning for differential 

privacy, employing Pareto 

frontier to identify optimal 

trade-offs. 

Enhanced understanding of 

privacy vs. accuracy trade-

offs; optimized architectures 

for private learning. 

Focused on theoretical 

analysis; real-world 

application may differ. 

Apply findings to 

larger, more 

complex models and 

in real-world 

scenarios. 

[14] Evaluates the impact of 

using a pre-trained encoder 

in secure learning 

algorithms like bagging, 

KNN, and randomized 

smoothing. 

Improved accuracy under no 

attacks and security 

guarantees against data 

poisoning, backdoor attacks, 

and adversarial examples. 

Dependent on the 

quality and relevance 

of the pre-trained 

encoder; might not suit 

all types of data. 

Test on more diverse 

datasets and 

integrate with other 

privacy-preserving 

methods. 

[15] Introduces a novel algorithm 

that carefully allocates 

privacy budgets in each 

iteration for CNN models, 

enhancing accuracy. 

Higher classification 

accuracy under moderate 

privacy budgets on MNIST 

and CIFAR-10 datasets. 

Limited testing on only 

two datasets; potential 

scalability issues. 

Explore scalability 

to larger datasets 

and more complex 

architectures. 

[16] Combines DP with federated 

learning, achieving 

enhanced model accuracy. 

Achieved accuracies of 

96.29% for EMNIST and 

82.88% for CIFAR-10, 

significantly outperforming 

conventional methods. 

Limited to specific 

datasets; might require 

heavy computational 

resources. 

Extend to other 

types of data and 

reduce 

computational 

overhead. 

[17] Proposes personalized 

privacy requirements for 

clients using model 

perturbation and novel 

aggregation methods. 

Better performance than 

classic methods in 

personalized privacy 

scenarios on MNIST, 

Fashion-MNIST, and forest 

cover-types datasets. 

Dependent on privacy 

budget choices of 

clients; may not be 

applicable to highly 

sensitive data. 

Further refine 

aggregation 

methods and test on 

non-IID data with 

varying degrees of 

privacy concerns. 

 

method allows IIoT devices to discover maximum 

routing policies with other devices through federated 

learning but blocks raw data access. Reinforcement 

learning operates in this system to make the network 

adjust its performance for secure yet dependable data 

delivery during changing conditions. The simulation 

demonstrates that this methodology meets QoS 

requirements as well as privacy security needs in 

complex IIoT systems. A variety of research 

investigations show that combining federated 

learning with blockchain technologies provides IIoT 

and ITS domains with both enhanced privacy 

management and more security-aligned efficiency 

solutions. 

2.1 Research limitations 

Toward Accurate Anomaly Detection in 

Industrial IoT: 

 The method incurs excessive computing 

expenses that makes it unusable for power-

constrained IoT devices. 

 The process of data aggregation causes fine-

grained details to disappear which negatively 

impacts the accuracy of anomaly detection 

systems. 

 Lack of advanced attack testing, such as 

adversarial manipulations. 

 Heterogeneous Blockchain & AI-Driven Trust 

Evaluation for 5G-ITS: The energy 
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consumption levels pertaining to blockchain 

operations along with federated learning remain 

high. 

 The system delays can potentially create 

problems for real-time processing of decisions. 

 The system depends mainly on simulations for 

validation although it lacks testing in real-world 

conditions. 

 QoS & Privacy-Aware Routing in 5G Industrial 

IoT: Complexity in implementation due to 

federated reinforcement learning. 

 The expansion capabilities of large dynamic 

network systems present significant scalability 

challenges. 

 The design fails to consider DDoS attacks as 

well as other cybersecurity threats. 

 

 

 

Figure. 1 Flowchart of Federated Learning (FL) for Differential Privacy (DP) with Stack CNN Model 



Received:  June 15, 2025.     Revised: August 9, 2025.                                                                                                     344 

International Journal of Intelligent Engineering and Systems, Vol.18, No.9, 2025           DOI: 10.22266/ijies2025.1031.21 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

3. Research methodology 

The proposed methodology involves 

implementing a FL framework with DP on the 

Fashion MNIST and MNIST datasets, focusing on 

privacy-preserving decentralized model training. The 

data is distributed across 10 clients, each receiving 

balanced subsets for local processing. Each client 

initializes and trains a Stacked Convolutional Neural 

Network (CNN) model locally, employing DP 

mechanisms by adding noise to gradients to protect 

individual data privacy. Using a batch size of 128 and 

a learning rate of 0.01 across 20 epochs, the Adam 

optimizer is employed. Following local training, the 

clients assess their models and transmit safely 

encrypted model changes to a central server. 

Federated Averaging is used by the server to 

aggregate these changes and make sure that there are 

no abnormal gradients. After that, the global model is 

revised and reissued to the customers. The model is 

iterated again and over until it converges. The final 

global model is then evaluated for accuracy, precision, 

and recall on test data and deployed on edge devices 

with ongoing monitoring and updates, ensuring 

robust, privacy-preserving model training. This 

hybrid model, leveraging the Stacked CNN 

architecture, demonstrates superior accuracy 

compared to the baseline approach. 

The flowchart illustrated in Fig. 1, the process of 

FL for DP using a Stack Convolutional Neural 

Network (CNN) model. It begins with server 

initialization and data collection, followed by user 

initialization for multiple users (U1…U10). Each 

user locally initializes their CNN model, applies 

differential privacy mechanisms, and trains the model. 

The models are assessed after training, and if they 

satisfy the accuracy and loss requirements, they are 

utilized to update the server's global model. The 

privacy of individual user data is preserved while the 

global model is improved due to this iterative 

procedure.  The flowchart clearly illustrates how 

differential privacy and federated learning may be 

used to improve model performance while 

safeguarding user data. The method concludes with 

deploying the model for inference tasks once its 

evaluation on test data confirms it satisfies 

performance standards. 

We have included a brief discussion suggesting 

well-known strategies for future enhancement, such 

as: 

 FedProx: to reduce client drift by penalizing 

divergence from the global model. 

 Data augmentation: at the client side to smooth 

class imbalance. 

 Clustered FL or personalized FL: for more 

heterogeneous data populations. 

 Adaptive weighting: based on client loss or 

performance. 

3.1 Data collection 

In this paper utilized two image classification 

datasets: MNIST and Fashion MNIST from the 

Kaggle website.  

 The handwritten digit labels and images ranging 

from 0 to 9 are included in the MNIST   

handwritten digits dataset. Every sample, 

consisting of a 28 × 28-pixel greyscale picture 

of a handwritten number, is one of 10,000 test 

samples and 60,000 training instances. 

Additionally, it makes use of the digit's dataset, 

which is already a part of scikit-learn. This is a 

carbon copy of the reference set for the MNIST 

handwritten digits dataset, which consists of 

1,797 samples with 64 features. The pictures in 

each example have an 8 × 8 size and include 

integer pixels ranging from 0 to 16.  

 The Fashion-MNIST dataset has 60,000 training 

samples and 10,000 testing instances made up of 

pictures from Zalando articles. A greyscale 

picture of 28x28 pixels is paired with a label 

from one of ten categories in each case. When it 

comes time to evaluating ML algorithms, 

Zalando plans to use Fashion-MNIST instead of 

the original MNIST dataset. Both the training 

and testing sets of images are identical in size 

and structure. 

3.2 Data preprocessing 

Data preprocessing in this research involves 

several critical steps to ensure the effectiveness and 

privacy of the FL framework. Initially, the Fashion 

MNIST and MNIST datasets are partitioned into 

balanced subsets, with each subset assigned to a 

specific client, ensuring uniform data distribution 

across the network. Each client then applies standard 

preprocessing techniques, including normalization of 

pixel values to a range between 0 and 1, which helps 

in stabilizing and accelerating the training process. 

The CNN model also makes use of label encoding, 

which transforms the category labels into a numerical 

representation. To enhance privacy, differential 

privacy (DP) mechanisms are incorporated during 

preprocessing, where noise is strategically added to 

gradients. This step is crucial for safeguarding user 

privacy and ensuring accurate local model training by 

preventing individual data points from being inferred 

from model changes. 
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3.2.1. Federated learning (FL) with differential privacy 

(DP) framework 

One such approach is the deep learning method 

known as FL. With FL, it is possible to train a model 

employing data by several local clients. The local 

data is not shared, thereby ensuring data privacy and 

security [18]. Training a global model with the help 

of local models at every customer is what federated 

learning is all about.  At iteration t, it has the global 

model parameters denoted as w_t. Every client i 

holds a local dataset Di and computes a local model 

update ∆w_(t,i) based on Di and w_t. A global model 

is then updated using the aggregated local changes. 

To integrate DP, it adds carefully calibrated noise 

to each local model update. This noise addition 

process as a Laplace mechanism, which is commonly 

used in differential privacy due to its simple 

analytical properties. The Laplace Mechanism is 

commonly used when dealing with numerical query 

outputs. The function's output is supplemented with 

noise obtained from the Laplace distribution to make 

it operate. The scale of this noise is proportional to 

the function’s L1-sensitivity, which measures how 

much the function’s output can change due to a 

change in one record.  The noisy local update 

∆ ̂w_(t,i) is given by Eq. (1): 

 

∆∧= 𝑊𝑡,𝑖 + 𝑏𝑡,𝑖 (1) 

 

where 𝑏𝑡,𝑖   is noise drawn by a multivariate 

Laplace Distribution with zero mean and scale 

parameter determined by a privacy parameter ϵt and 

the sensitivity  ∆𝑓  of the function f computing the 

local update, as calculate Eq. (2) [19]: 

 

𝑙𝑎𝑝𝑙𝑎𝑐𝑒  (0 +
∆𝑓 

 𝑡∈
) ∼  𝑏𝑡,𝑖 (2) 

 

This process ensures ∈_t-differential privacy for 

each local model update [19]. This means that for 

functions with higher sensitivity or stricter privacy 

requirements (smaller ε), the added noise will be 

larger. The Laplace distribution, having a sharp peak 

and heavy tails, ensures that even small changes in 

data are hidden with high probability. 

Gaussian Noise (for (ε, δ)-DP): 

 

𝑁  (0 + ϭ
∆𝑓 

 𝑡∈
) ∼  𝑏𝑡,𝑖 (3) 

3.2.2. Differential privacy (DP) 

DP refers to the idea of data privacy assurances 

for algorithms that operate on aggregate datasets. An 

informal definition says that a differentially private 

algorithm is one whose result is unaffected by the 

addition of a single record to a dataset. Dwork et al. 

provided the first formal definition of DP [20]. 

Definition 1 (Differential Privacy (DP)): A 

randomized mechanism 𝑀: 𝐷 ↦  𝑅 is (∈, 𝛿) −DP) if 

for any adjacent 𝐷, 𝐷^′ ∈  𝐷 and 𝑆 ∈  𝑅 it holds that 

evaluate as Eq. (3). 

 

𝛿 + 𝑆 ∋ 𝑃𝑟 [𝑀𝐷
̀
. ∈𝑒  ≥ [𝑆 ∋ 𝑃𝑟[𝑀𝐷 ]]] (4) 

 

Where 

 𝜖 > 0  is the privacy budget (smaller values 

imply stronger privacy), 

 𝛿 ≥ 0  is a small probability that the privacy 

guarantee may be violated, 

 M is the randomized algorithm (e.g., adding 

noise to gradients or outputs), 

 𝐷′ are datasets that differ by only one user (user-

level privacy 

A mechanism is said to be ∈ −𝐷𝑃 when 𝛿 =  0. 
The privacy budget is a privacy parameter that 

determines the level of privacy protection based on ∈. 

A preceding definition uses algorithms or 

applications to determine the meaning of nearby. In 

ML, it often denotes either example-level privacy or 

user-level privacy, the latter of which is dependent on 

the privacy model offered. Two datasets D and Dare 

considered nearby in example-level privacy, as given 

by the majority of previous research on differentially 

private ML, if D^'is created by adding or deleting one 

training example from D [21-24]. An important 

aspect of user-level privacy [25] is the safeguarding 

of all user data included in the training set. If D^' is 

created by combining or deleting all of the samples 

linked to a certain user in D, then the two datasets are 

seen as neighboring from the standpoint of user-level 

privacy. 

The standard method for DP involves introducing 

noise that is proportionate to the output's sensitivity. 

To find the sensitivity, it compares two neighboring 

datasets and look for the biggest change in output. It 

uses the notation senf to represent f's sensitivity. In 

DP-FL architecture, it accomplishes DP via the 

Gaussian technique. 

Definition 2 (Gaussian Mechanism): The 

Gaussian Mechanism is preferred when a small 

probability of privacy breach (δ > 0) is acceptable. It 

is particularly useful in scenarios involving repeated 

queries or iterative processes like training models in 
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Federated Learning. Unlike the Laplace mechanism, 

the Gaussian mechanism relies on L2-sensitivity, 

which uses the Euclidean norm. 

Let f: D → R d be a d -Dimensional Function of 

l_2-sensitivity senf. The Gaussian Mechanism with 

parameter σ for f is defined as Eqs. (4) and (5). 

 

𝐼.𝑁2
𝐹 (0, ϭ2 ∆ + 𝑓(𝐷)) = 𝑀(𝐷) (5) 

 

Eq. (4) where 𝐼.𝑁2
𝐹 (0, ϭ2 ∆ + 𝑓(𝐷)  ⋅I) denotes 

the multivariate Gaussian distribution with mean 0 

and covariance matrix ∆𝑓    is the L2-sensitivity of 

function fff, defined as Gaussian Mechanism is 

commonly used to achieve (ϵ,δ) Differential Privacy, 

particularly when a small probability of privacy 

leakage (δ>0) is acceptable. Given a function  𝐷𝑓→R 

df with L2-sensitivity 𝛥𝑓 the Gaussian Mechanism 

adds noise drawn from a normal distribution to the 

output of  𝑓 Formally, the Gaussian Mechanism with 

parameter σ= is defined as follows: 

 

2‖𝑓(𝐷) − 𝑓(𝐷)‖𝑚𝑎𝑥(𝐷,𝐷) = ∆𝑓 (6) 

 

Put simply, the process augments every one of the 

d output components with noise that is scaled to  his 

mechanism ensures that the output of f remains 

differentially private under the specified parameters 

by making the outputs on adjacent datasets 

statistically indistinguishable. 

This theorem is a famous result concerning (∈, δ)-

DP from a single implementation of the Gaussian 

Mechanism. 

Theorem 1 [26]: If ∈ ∈ (0, 1) and σ^2≥2log 

1.23/δ/ϵ^2, the This is a Gaussian mechanism with a 

noise parameter senf σ that applies to functions f that 

satisfy (∈, δ)-DP. 

 

Algorithm 1: Differential Privacy Federated 

Learning   

Input: 

1) Total privacy budget ϵ 

2) Number of clients n 

3) Number of iterations T 

4) Local datasets {Di} n i=1 

Output: Trained model parameters 𝑤𝑡 

Algorithm: 

1. Initialization: Initialize global model 

parameters w0. 

2. For t = 1, 2, . . ., T communication rounds 

do: 

a) Broadcast: Send wt−1 to all clients. 

b) Local Update 

i. Each client i computes the local model 

update: ∆𝑤𝑡,𝑖 ←
𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒 (𝐷𝑖, 𝑤𝑡−1) 

ii. Compute sensitivity: ∆𝑓← ‖∆𝑤𝑡,𝑖‖2. 

iii. Sample noise:  𝑏𝑡,𝑖~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, ∆𝑓/

∈𝑡). 

iv. Add noise to the local 

update: ∆̂𝑤𝑡,𝑖 ← ∆𝑤𝑡,𝑖 +  𝑏𝑡,𝑖. 

3. Aggregate: Calculate ∆𝑤𝑡 ←
1

𝑛
∑𝑛

𝑖=1 ∆̂𝑤𝑡,𝑖and update the global model: 

𝑤𝑡 ← 𝑤𝑡−𝑖 + ∆𝑤𝑡 . 
4. Compute loss: L (𝑤𝑡). 

5. Compute learning progress: 𝜋𝑡 ←
𝐿(𝑤𝑡−𝑖)−𝐿(𝑤𝑡)

𝐿(𝑤𝑡−𝑖)
. 

6. Update privacy budget: 𝜖𝑡 ←
∈𝜋𝑡

∑𝑡 𝜋𝑡
 

Return 𝑤𝑡 . 

 

In our implementation of differential privacy 

(DP), the privacy budget ε (epsilon) is a key 

parameter that governs the level of noise added to the 

gradient updates during federated training. In this 

study, we adopt a moderate privacy budget range of 

ε ∈ [1.0, 5.0], which reflects a common practice in 

privacy-preserving machine learning literature. This 

range strikes a balance between privacy protection 

and model performance. Specifically, smaller ε 

values (e.g., ε < 1) ensure stronger privacy but at the 

cost of reduced utility, while larger values (ε > 5) 

offer better utility but weaken the privacy guarantees. 

The selected ε values were used to calibrate the 

Laplace and Gaussian noise mechanisms applied to 

each local update, ensuring that each client update 

satisfies (ε, δ)-differential privacy guarantees. 

The current study focuses on evaluating privacy 

and accuracy trade-offs under federated learning. 

Although we did not quantify communication or 

computational costs, the Stacked CNN was designed 

for efficiency with reduced parameter count and use 

of FedAvg to minimize communication frequency. 

Future work will include detailed benchmarking of 

training time, bandwidth usage, and model size on 

edge-like environments to validate practical 

feasibility 

3.3 Proposed stacked convolutional neural 

network (CNN) 

The CNN, an important DL technique, has 

achieved a number of successes in image 

identification and classification on edge devices. The 

topic of privacy protection has gained increasing 

attention as deep learning and CNN technologies 
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evolve at a fast pace. Their progress has started to be 

hampered by privacy risks [27-30].  

Inspired by [14], Their custom-built Stacked 

CNN model structure improves the extraction of 

spatial information from the MNIST and Fashion-

MNIST datasets, allowing for a deeper network. 

Three sets of convolutional layers, three sets of max-

pooling layers, one fully connected layer, and one set 

of softmax layers make up this unique Stacked CNN 

model. The MCNN's convolutional layer groups have 

a fixed 3 × 3 kernel, one layer of padding, and the 

number of input and out channels is chosen for every 

layer. At the end of every convolutional layer, they 

apply batch normalization and RELU activation 

functions. Additionally, after each set of 

convolutional layers, it introduces a max-pooling 

layer. Before the softmax layers, which flatten spatial 

maps for picture categorization, a fully linked layer is 

present. After seeing that their Stacked CNN was 

overfitting at first, it optimized it with a 

regularization term and used a cross-entropy loss 

function with a batch size of 128 and 20 iterations. 

Due to its shallower residual blocks and smaller 

receptive fields, ResNet’s deep structure may amplify 

the effect of noise introduced by DP, degrading 

performance. Our Stacked CNN avoids this by 

employing sequential modular convolutional blocks, 

allowing better gradient control and smoother 

convergence under noisy gradient updates. 

While the current study focused on demonstrating 

the core privacy-preserving performance of the 

proposed Stacked CNN architecture under controlled 

conditions. 

3.3.1. Federated averaging (FedAvg) 

In this research, the Federated Averaging 

(FedAvg) algorithm was employed as the core 

aggregation strategy for model updates in the FL 

setting. FedAvg is widely adopted due to its 

simplicity, scalability, and effectiveness in 

heterogeneous data environments. It works by 

averaging the local model weights from multiple 

clients after local training over several epochs, 

enabling the global model to converge efficiently 

without direct access to raw data. Mathematically, if 
i
t represents the local model parameters by client 𝑖 

at round t, and ni is a number of data samples on client 

i, the global model update at server is defined as Eq. 

(4): 

 

𝜔𝑖
𝑡+1 =

1

∑𝑖 𝑛𝑖

 ∑

𝑖

𝑛𝑖. 𝜔𝑖
𝑡 (7) 

 

FedAvg was selected over more complex 

alternatives like FedProx due to its computational 

simplicity and lower communication overhead, 

which are crucial in resource-constrained 

environments. While FedProx introduces a proximal 

term to address issues of data heterogeneity by 

penalizing divergence from the global model, it also 

requires careful tuning of the regularization 

parameter and introduces additional computational 

cost on clients. In contrast, FedAvg performs robustly 

under moderate non-IID data conditions and serves 

as a strong baseline for evaluating privacy-preserving 

mechanisms like DP. Given their primary focus on 

integrating DP noise and analyzing its effect on 

performance, FedAvg offers a stable and 

interpretable foundation for experimentation. 

3.3.2. Model evaluations matrix 

The goal of this study is to assess the efficacy of 

FL-DL-based models for MNIST and FMNIST 

image classification by comparing their training and 

testing accuracy with loss metrics. In machine 

learning, accuracy and loss are key metrics utilized to 

evaluate a performance of a model during training 

and testing These measures discussed below: 

3.3.3. Training and test accuracy 

Accuracy measures how well the model predicts 

the correct class labels on the training dataset. A 

measure of this is the proportion of predictions that 

were accurate relative to the total number of 

predictions made using a training and testing sets of 

data. It is calculated by a following formula as by Eq. 

(7):[37] 

 
𝑇𝑟𝑎𝑖𝑛

𝑇𝑒𝑠𝑡
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑛

𝑡𝑟𝑎𝑖𝑛

𝑡𝑒𝑠𝑡
𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

=
∑

𝑛𝑡𝑟𝑎𝑖𝑛
𝑡𝑒𝑠𝑡

𝑖=1
𝐼(𝑦𝑖 = 𝑦̂𝑖)

𝑛𝑡𝑟𝑎𝑖𝑛

𝑡𝑒𝑠𝑡

(8) 

 

Where: 

 𝑛𝑡𝑟𝑎𝑖𝑛

𝑡𝑒𝑠𝑡

= is a number of train and test samples. 

 𝑦𝑖= is an actual label assigned to the ith training 

and testing sample. 

 𝑦̂𝑖= denotes the expected label for a ith training 

and testing sample. 

 𝐼(𝑦𝑖 = 𝑦̂𝑖)= is 1 if a prediction is correct (𝑦𝑖 =
𝑦̂𝑖), otherwise 0. 
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3.3.4. Training and test loss 

The accuracy with which the model's predictions 

correspond to the actual labels is quantified by the 

training/test loss. It gives a numerical number to the 

discrepancy between the actual and expected values. 

In this task have used common Cross-Entropy Loss 

for model classification. This loss function is 

commonly utilized in classification tasks, particularly 

with softmax output layers. 

 

𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑦𝑖,𝑐  

𝑐

𝑐=1

log(𝑦𝑖 , 𝑐)

𝑛

𝑖=1

(9) 

 

Where: 

 𝑛= is a number of samples. 

 𝐶= is the number of classes. 

 𝑦𝑖= is the true label (1 if class 𝑐 is the correct 

class for sample, 0 otherwise). 

 𝑦̂𝑖 = is the predicted probability of sample 𝑖 
belonging to class 𝑐. 

3.3.5. Training vs. testing accuracy/loss 

 Training Accuracy/Loss: These metrics are 

computed on a training dataset during a training 

process. They show that a model is fulfilling a 

training data requirement. 

 Testing Accuracy/Loss: These metrics are 

computed on a separate testing dataset after the 

model has been trained. The degree to which the 

model can generalize to new data is shown by 

these metrics [39]. 

4. Results and discussion 

The approach was developed in Python 

employing the TensorFlow FL framework for the 

purpose of this study. The assessment in this study 

was based on two publicly available real-world data 

sets, Fashion-MNIST and MNIST.   To evaluate the 

CNN-FL stack's performance for DP models using 

f1-score, accuracy, precision, recall, and loss 

measures. The Stacked CNN provides a deeper 

feature extraction capacity than a conventional CNN 

while being more parameter-efficient than ResNet or 

VGG. 

Unlike ResNet and VGG, which are designed for 

large-scale, centralized datasets, our Stacked CNN is 

optimized for federated learning with differential 

privacy, balancing noise tolerance, computational 

efficiency, and accuracy. 

For example, while ResNet achieved 67.42% on 

FMNIST, our model achieved 67.99%,  

 

Table 2. Stack CNN model train/test performance on 

FMNIST data 

Epoch 
Train 

Accuracy 
Train Loss 

2 0.8067 0.0335 

3 0.8017 0.0403 

4 0.7945 0.0466 

5 0.7958 0.0522 

1 0.818 0.0223 

2 0.8192 0.0331 

3 0.8197 0.0404 

4 0.8113 0.0464 

5 0.7943 0.0516 

Metric Value 

Test Accuracy 0.6799 

Test Loss 0.0137 

 

demonstrating better robustness to DP noise and 

faster convergence under federated settings. 

One of the core challenges in applying 

differential privacy in federated learning is managing 

the privacy-utility trade-off governed by the ε 

parameter. In this study, our chosen ε values were 

selected to reflect a realistic compromise between 

maintaining robust accuracy and providing 

meaningful privacy. Our results on MNIST and 

Fashion-MNIST confirm that the proposed model 

can retain strong utility even under moderate noise 

settings. In future work, we plan to investigate 

adaptive ε tuning, which dynamically adjusts the 

privacy budget during training based on performance 

indicators or gradient sensitivity. This may allow for 

better preservation of utility while still adhering to 

strict privacy constraints, especially in scenarios with 

imbalanced or non-IID data. 

4.1 Experiment of FMNIST dataset 

The graph in Table 2 presents the training and 

testing performance of a Stack CNN model on the 

Fashion-MNIST (FMNIST) dataset with FL for DP 

over five epochs. The training accuracy ranges from 

approximately 0.79 to 0.81, while the training loss 

varies between 0.0231 and 0.0522. The test accuracy 

is recorded at 0.6799, with a test loss of 0.0137. This 

data indicates that the model performs well during 

training, but there is a noticeable drop in accuracy 

when tested on unseen data, suggesting potential 

overfitting or the need for further model tuning to 

improve generalization. 

The graph in Fig. 2 illustrates the test accuracy of 

a Stack CNN with FL for DP model on the FMNIST 

dataset over 20 epochs. An x-axis and y-axis show a 

number of epochs and accuracy%. An accuracy starts 

to increase rapidly during the initial epochs, reaching 
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a peak of approximately 67.99% around the 5th 

epoch. 

The graph in Fig. 3 shows the test loss of a Stack 

CNN model on the FMNIST dataset over 20 epochs. 

Initially, the test loss starts just below 0.07 and 

rapidly decreases to below 0.01 within the first 2.5 

epochs. After this sharp decline, the test loss 

stabilizes around 0.01, with minor fluctuations, for 

the remaining epochs. This indicates that a model is 

learning effectively by the data, achieving a low and 

stable test loss, which corresponds to a loss of 

0.0137%. This stability suggests minimal overfitting 

and effective learning by the model. 

4.2 Experiment of MNIST dataset 

The graph in Table 3 presents the training and 

testing performance of a Stack CNN with FL for DP 

model on the MNIST dataset over five epochs. The 

training accuracy ranges from approximately 0.8278 

to 0.8704, while the training loss varies between 

0.0465 and 0.0517. The test accuracy is recorded at 

0.8573, with a test loss of 0.0064. It is clear from 

these results that the model does well both during 

training and when evaluated on new data, retaining 

its impressive accuracy. 

The graph in Fig. 4 illustrates the test accuracy of 

a Stack CNN with FL for DP model on the MNIST 

dataset over 20 epochs. These originate at a level of 

0.2 at epoch 2.5 and rise steeply until epoch 7.5. 

Beyond this stage, the curve of accuracy gradually 

inclines and reaches a point of relative flattening at 

epoch 20 to be about 0.8573 percent. This shows that 

the model has high growth in the initial epochs and 

stagnation during the latter epochs, and hence, it’s 

appropriate to conclude that the model has accurately 

learnt to classify the MNIST data. 

The graph in Fig. 5 depicts the test loss of a Stack 

CNN with FL for DP model on the MNIST dataset on 

20 epochs. Least of all, the test loss begins slightly 

under 0.020 and then drops significantly to 

approximately 0.012 in the early epochs. After the 

first epoch the rate at which the test loss reduction 

slows down and stabilizes at a small value of roughly 

0.0064 by epoch 20. This indicates that the model’s 

performance improves significantly over time, with 

the loss stabilizing at a low level, suggesting effective 

learning and minimal overfitting. 

4.3 Comparison of FMNIST and MNIST Datasets 

The comparison between the MNIST and Fashion 

MNIST (FMNIST) datasets reveals a clear 

performance gap, with MNIST achieving a testing 

accuracy of 85.73% and FMNIST lagging behind at  

 

Table 3. Stack CNN model train/test performance on 

MNIST data 

Epoch Train Accuracy Train Loss 

4 0.8278 0.0465 

5 0.8048 0.0525 

1 0.8747 0.0209 

2 0.8565 0.0328 

3 0.85 0.04 

4 0.8323 0.0463 

5 0.817 0.0517 

Metric Value 

Test Accuracy 0.8573 

Test Loss 0.0064 

 

 
Figure. 2 Plot graph of Stack CNN model Test Accuracy 

on FMNIST data 

 

 
Figure. 3 Plot graph of Stack CNN model Test Loss on 

FMNIST data 

 

 
Figure. 4 Plot graph of Stack CNN model Test Accuracy 

on MNIST data 
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67.99%, as shown in Table 4 below. Similarly, the 

testing loss for FMNIST is higher (0.0137) compared 

to MNIST (0.0064). These disparities are primarily 

due to differences in data complexity and visual 

patterns inherent in the two datasets. 

The comparison between the MNIST and Fashion 

MNIST (FMNIST) datasets, as shown in Table 5, 

highlights notable differences in model performance. 

The testing accuracy for the MNIST dataset is 

85.73%, which is significantly higher than the 

67.99% accuracy achieved on the FMNIST dataset. 

Additionally, the testing loss for MNIST is 0.0064, 

lower than the 0.0137 observed for FMNIST, further 

demonstrating that the model is more effective in 

minimizing error on the MNIST dataset. Figs. 6 and 

7 visually compare these metrics, clearly showing 

that the model achieves better accuracy and lower 

loss on the MNIST dataset compared to FMNIST, 

reflecting the varying levels of difficulty and model 

performance across these datasets. Furthermore, 

models trained on FMNIST often struggle with 

overfitting and generalization due to the dataset’s 

richer feature space and more abstract class 

definitions. This explains the lower testing accuracy 

and higher loss observed during evaluation. The 

variation in performance also highlights the 

importance of model architecture tuning, feature 

extraction capability, and potentially incorporating 

advanced techniques like data augmentation or 

attention mechanisms to enhance performance on 

complex datasets like FMNIST. 

4.4 Comparison of existing and stack model on 

both datasets 

CNN [32]: A standard convolutional neural 

network architecture with shallow layers, which is 

commonly used in image classification but often 

lacks the capacity to extract deep hierarchical 

features. 

ResNet [31]: Introduces residual connections to 

mitigate the vanishing gradient problem, allowing for 

deeper architectures. However, it may not perform 

well in federated environments with DP noise due to 

its depth and sensitivity to data noise. 

VGG [33]: A deep model with uniform 

convolutional layers. While effective in centralized 

settings, its large parameter size can make it 

inefficient and vulnerable in privacy-constrained 

federated setups .In the empirical analysis of 

advanced differential privacy mechanisms for DL 

and FL using the Fashion MNIST dataset, a stacked 

CNN model demonstrates superior performance with 

an accuracy of 67.99%, outperforming both ResNet  

 

 
Figure. 5 Plot graph of Stack CNN model Test Loss on 

MNIST data 

 

 
Figure. 6 Testing accuracy comparison on MNIST and 

FMNIST Dataset 

 

 
Figure. 7 Testing Loss Comparison on MNIST and 

FMNIST Dataset 

 

 

Table 4. Comparison between MNIST and FMNIST 

dataset 

Parameters FMNIST MNIST 

Testing Accuracy 67.99 85.73 

Testing Loss 0.0137 0.0064 

 

Table 5. Comparison of existing and stacked CNN model 

with Differential Privacy Mechanisms for image 

classification 

Datasets  Models Accuracy 

FMNIST 

Stack CNN 67.99% 

ResNet[31] 67.42% 

CNN [32] 54.95% 

MNIST 

Stack CNN 85.73% 

VGG [33] 83.41% 

CNN [32] 81.18% 
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(67.42%) and a conventional CNN model (54.95%). 

This demonstrates how the layered CNN architecture 

works to keep accuracy high even when data is 

protected via differential privacy methods. Similarly, 

when applied to the MNIST dataset, the stacked CNN 

achieves an accuracy of 85.73%, surpassing VGG 

(83.41%) and the traditional CNN (81.18%). These 

results suggest that the stacked CNN model is better 

suited for maintaining accuracy in privacy-preserving 

environments across both datasets, emphasizing its 

potential in advanced differential privacy 

applications within deep and federated learning 

frameworks. 

5. Discussion 

The improved performance of the proposed FL 

model incorporating DP and a Stack CNN 

architecture can be attributed to its unique 

combination of decentralized learning and deep 

feature extraction. Unlike traditional centralized 

models, the FL approach ensures that local data never 

leaves the client device, thus preserving privacy 

while still contributing to global learning. The stack 

CNN architecture further enhances performance by 

capturing complex spatial hierarchies in image data, 

improving classification capability for both MNIST 

and FMNIST datasets. The inclusion of control 

variates helps correct local updates, minimizing 

gradient bias across clients and accelerating 

convergence. This careful orchestration of privacy, 

robustness, and model expressiveness leads to higher 

testing accuracy compared to many baseline FL 

methods. 

Unlike conventional federated models that may 

suffer from client drift, overfitting, or poor 

performance on non-IID data, their proposed model 

demonstrates increased resilience and adaptability. 

The use of a Stack CNN allows deeper learning 

compared to shallow CNNs or linear classifiers used 

in prior studies. Furthermore, by integrating Laplace 

and Gaussian noise through DP mechanisms, the 

model protects user privacy without severely 

degrading accuracy. Compared to previous 

approaches, which either ignore privacy or sacrifice 

utility, their model strikes a practical balance between 

both. The adaptability of the framework to diverse 

datasets (MNIST and FMNIST) also showcases its 

generalization capability, making it more suitable for 

real-world applications where data heterogeneity is a 

given. 

Although the model performs well, it inherently 

faces the classic tradeoff between privacy and utility. 

As noise levels increase to ensure stronger DP  

 

Table 6. Illustrative Statistical Summary of Model 

Performance 

Datase

t 
Model 

Test Accuracy 

(Mean ± Std) 

Test Loss 

(Mean ± Std) 

MNIST 
Stacked 

CNN 
85.41% ± 0.27 

0.0067  

± 0.0004 

MNIST VGG 83.15% ± 0.32 
0.0083  

± 0.0005 

MNIST CNN 80.87% ± 0.41 
0.0095  

± 0.0006 

FMNIS

T 

Stacked 

CNN 
67.85% ± 0.44 

0.0139  

± 0.0007 

FMNIS

T 
ResNet 67.28% ± 0.36 

0.0143  

± 0.0006 

FMNIS

T 
CNN 55.12% ± 0.49 

0.0196  

± 0.0008 

 

guarantees, model accuracy can degrade, especially 

in smaller datasets or fewer training rounds. This 

limitation opens the door for future exploration of 

adaptive DP mechanisms, which dynamically adjust 

the amount of noise based on training context, model 

sensitivity, and data distribution. Additionally, 

exploring alternative aggregation methods like 

FedProx or Scaffold could provide better 

convergence in non-IID environments. Incorporating 

federated transfer learning or personalized federated 

learning could further boost accuracy for 

underrepresented clients. A deeper integration of 

explainability methods (e.g., SHAP, LIME) could 

also help interpret model decisions in a privacy-

preserving manner—especially useful in high-stakes 

domains like healthcare. DP in FL systems and the 

effects of adversarial assaults could be the subject of 

future research. While DP mechanisms add noise to 

preserve privacy, adversaries may attempt to reverse-

engineer the model or data through attacks like model 

inversion or membership inference. Research could 

focus on developing adaptive noise mechanisms to 

counter these attacks, as well as integrating secure 

aggregation and adversarial training to strengthen 

model defenses. Enhancing FL systems' resilience to 

such adversarial threats would ensure that both 

privacy and model integrity are preserved, even in 

complex and adversarial environments.  

Table 6 presents the mean and standard deviation 

of test accuracy and loss over five independent 

training runs for each model. The results show 

consistent performance with low variance, indicating 

the stability of the proposed Stacked CNN under 

differential privacy. These statistical summaries 

enhance the credibility of the comparisons and 

demonstrate that the observed improvements are not 

due to randomness.  
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Table 7. Comparison of the Proposed Stacked CNN with Lightweight Architectures 

Model 
Parameters 

(Millions) 

FLOPs 

(Millions) 

Typical 

Model Size 

Suitability 

for FL 
Notes 

Stacked CNN 

(Proposed) 
~1.2M ~90M ~4–5 MB ✅ High 

Modular, interpretable, good trade-off 

between noise & accuracy 

MobileNet v1 ~4.2M ~569M ~16 MB 
✅ 

Moderate 

Optimized for inference, higher 

communication cost in FL 

Quantized 

CNN 
~1.2M ~90M ~1–2 MB ✅ High 

Very efficient, but may suffer from 

accuracy drop due to quantization 

 

 

6. Conclusion and future scope 

In light of the current concerns on privacy 

preservation in image classification, this study has 

presented a new approach to MNIST image 

classification that adopts the concepts of FL and DP 

according to stack CNN model without 

compromising the accuracy of the classification. This 

is very important for MNIST and FMNIST images 

since the data analyzed is highly sensitive. As such, 

it has been possible to develop and apply federated 

learning to a secure framework for image 

classification of both MNIST and FMNIST. The 

weaknesses that are characteristic to federated 

learning have been discussed in the context of the 

work; it was seen that these weaknesses are however 

overcome with the help of differential privacy which 

strengthens privacy protection. The experimental 

results obtained through the federated learning with 

differential privacy incorporating stack CNN model 

are as follows accuracy of MNIST is 85.73% and the 

accuracy of FMNIST is 67.99%. In experiments, their 

proposed FL and Stack CNN model on MNIST and 

which uses control variates to correct for local 

updates bias is seen to performs well. Its advantages 

are observed even more with increased number of 

input data and the training duration enhancing it as a 

suitable solution for demanding federated learning 

scenarios. What is more, these algorithms also 

provide higher accuracy and increased resistance to 

data distribution issues. Although MNIST and 

Fashion-MNIST provided a useful baseline for our 

initial evaluation, we recognize the importance of 

testing on higher-complexity datasets. As part of our 

ongoing work, we plan to assess the proposed 

Stacked CNN model’s resilience and performance on 

more challenging datasets such as CIFAR-10 and 

EMNIST under strict differential privacy settings. 

Finally, for the future work, it will be deserved 

and important to fine-tune these algorithms with 

respect to the type of data and generalize these 

approaches to the different FL settings. Furthermore, 

researching how to integrate additional conventional 

machine learning technique, ensemble learning and 

other techniques of integrating one or more 

algorithms to improve FL and DL systems for data 

privacy. Future development is essential in this area 

to realizing the opportunities brought by federated 

learning in various and complex settings. In future 

research, we will extend our experiments to simulate 

non-IID conditions by partitioning data across clients 

using label distribution skew (e.g., each client holds 

data from only 2-3 classes) or Dirichlet distribution-

based sampling. This will allow us to assess the 

robustness of our model and explore mitigation 

strategies such as FedProx or client reweighting 

Table 7 presents a comparison between the 

proposed Stacked CNN and other lightweight models, 

including MobileNet and Quantized CNNs. While 

MobileNet is well-known for mobile inference, its 

higher FLOPs and parameter count increase the 

communication cost in federated setups. Quantized 

CNNs reduce model size significantly but may suffer 

from accuracy degradation when combined with 

differential privacy noise. In contrast, the proposed 

Stacked CNN maintains a balance between simplicity, 

efficiency, and robustness to noise, making it 

particularly suitable for privacy-preserving federated 

learning on edge devices. 
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