Ph.D in Analytical Chemistry and Separation Sciences from USM (Universiti Sains Malaysia)- since 2012
Academic Staff in Department of Chemistry- College of sciences-Univesity of Baghdad
Food Analysis, Pharmaceutical compounds, Extrction methods, Microanalysis, Chromatography and Mass spectrometry
General Chemistry, Analytical Chemistry, Gravimetric analysis, Chemical Safety and Security, Instrumental analysis and Research methodology
MSc. and PhD Candidates
A reversed-phase HPLC method with fluorescence detection for the determination of the aflatoxins B1, B2, G1 and G2 in 42 animal feeds, comprising corn (16), soya bean meal (8), mixed meal (13), sunflower, wheat, canola, palm kernel, copra meals (1 each) was carried out. The samples were first extracted using acetonitrile:water (9:1), and was further cleaned-up using a multifunctional column. Optimum conditions for the extraction and chromatographic separation were investigated. By adopting an isocratic chromatographic system using a mobile phase comprising acetonitrile:methanol:water (8:27:65, v/v/v), the separation of the four aflatoxins was possible within 30 min. Recoveries for aflatoxins B1, B2, G1 and G2 were 98 ± 0.7%, 95 ± 1.0%, 94
... Show MoreA new spectrophotometric method for the determination of allopurinol drug was investigated. The proposed method was based on the reaction of the intended drug with catechol and Fe(II) to form a blue soluble complex which was measured at λmax 580 nm. A graph of absorbance versus concentration shown that Beer’s law was obeyed over the concentration range of 2–10 μg ml–1 with molar absorptivity of 9.4 x 103 l mol–1 cm–1 and Sandell sensitivity of 1.4 x 10–2 μg cm–2. A recovery percentage of 100% with RSD of 1.0%–1.3% was obtained. The proposed method was applied successfully for the determination of allopurinol drug in tablets with a good accuracy and
A simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g−1, 0.02 and 0.02 ng mL−1, respectively while the quantification limits were 0.19 ng g−1, 0.06 and 0.08 ng mL−1, respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g−1, grape juice and urine samples at 1, 25 and 50 ng mL
... Show MoreThe development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B1 and fumonisin B2 by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C18 solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith® RP-18e column
... Show MoreA simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith performance RP-18e (100–4.6 mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38–104.5% and RSDs were <4.4%. The method was
... Show MoreA single step extraction-cleanup procedure using porous membrane-protected micro-solid phase extraction (μ-SPE) in conjunction with liquid chromatography–tandem mass spectrometry for the extraction and determination of aflatoxins (AFs) B1, B2, G1 and G2 from food was successfully developed. After the extraction, AFs were desorbed from the μ-SPE device by ultrasonication using acetonitrile. The optimum extraction conditions were: sorbent material, C8; sorbent mass, 20 mg; extraction time, 90 min; stirring speed, 1000 rpm; sample volume, 10 mL; desorption solvent, acetonitrile; solvent volume, 350 μL and ultrasonication period, 25 min without salt addition. Under the optimum conditions, enrichment factor of 11, 9, 9 and 10 for AFG2, AFG1
... Show MoreA simple, economical and selective method employing ion pair dispersive liquid−liquid microextraction (DLLME) coupled with spectrophotometric determination of carbamazepine (CBZ) in pharmaceutical preparations and biological samples was developed. The method is based on reduction of Mo(VI) to Mo(V) using a combination of ammonium thiocyanate and ascorbic acid in acidic medium to form a red binary Mo(V) thiocyanate complex. After addition of CBZ to the complex, extraction of the formed CBZ−Mo(V)−(SCN)6 was performed using a mixture of methylene chloride and methanol. Then, the measurement of target complex was performed at the wavelength of 470 nm. The important extraction parameters affecting the efficiency of DLLME were studied and o
... Show MoreA dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreA batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92
... Show MoreA simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl
... Show MoreA simple and novel method was developed by combination of dispersive liquid-liquid microextraction with UV spectrophotometry for the preconcentartion and determination of trace amount of malathion. The presented method is based on using a small volume of ethylenechloride as the extraction solvent was dissolved in ethanol as the dispersive solvent, then the binary solution was rapidly injected by a syringe into the water sample containing malathion. The important parameters, such the type and volume of extraction solvent and disperser solvent, the effect of extraction time and rate, the effect of salt addition and reaction conditions were studied. At the optimum conditions, the calibration graph was linear in the range of 2-100 ng mL-1 of ma
... Show MoreThe present study combines UV-Vis spectrophotometry and dispersive liquid-liquid microextraction (DLLME) for the preconcentration and determination of trace level clidinium bromide (Clid) in pharmaceutical preparation and real samples. The method is based on ion-pair formation between Clid and bromocresol green in aqueous solution using citrate buffer (pH = 3). The colored product was first extracted using a mixture of 800 µL acetonitrile and 300 µL chloroform solvents. Then, a spectrophotometric measurement of sediment phase was performed at λ = 420 nm. The important parameters affecting the efficiency of DLLME were optimized. Under the optimum conditions, the calibration graphs of standard -1 (Std.), drug, urine and serum were ranged
... Show MoreA rapid high performance liquid chromatography method for the determination of sphinganine (Sa) and sphingosine (So) in urine samples by employing a silica-based monolithic column is described. The samples were first extracted using ethyl acetate and derivatized using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol. C20 sphinganine was used as internal standard. Under the optimized conditions, separation was achieved using a mixture of methanol:water (93:7, v/v), column temperature at 30°C, flow rate of 1 mL min−1, and an injection volume of 10 μL. Good linearity was obtained for Sa and So over the concentration range 20–500 ng mL−1(correlation coefficients ≥0.9978). The detection limits were 0.45 ng mL−1 for Sa and
... Show More