Omar S. A. Al-Khazrajy is an environmental analytical chemist with an interest in the application of analytical chemistry in the monitoring, fate and uptake of pharmaceuticals in aquatic systems. His studies focus on the impacts of pharmaceutical in the aquatic sediment.
A robust and sensitive analytical method is presented for the extraction and determination of six pharmaceuticals in freshwater sediments.
Nanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil–earthworm systems to compare the fate and uptake of analytical‐grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non‐nano treatments, whereas dissipation half‐lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more b
Degradation is one of the key processes governing the impact of pharmaceuticals in the aquatic environment. Most studies on the degradation of pharmaceuticals have focused on soil and sludge, with fewer exploring persistence in aquatic sediments. We investigated the dissipation of 6 pharmaceuticals from different therapeutic classes in a range of sediment types. Dissipation of each pharmaceutical was found to follow first‐order exponential decay. Half‐lives in the sediments ranged from 9.5 (atenolol) to 78.8 (amitriptyline) d. Under sterile conditions, the persistence of pharmaceuticals was considerably longer. Stepwise multiple linear regression analysis was performed to
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across
... Show MoreThe photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of saf
... Show MoreA spectrophotometric reliable, rapid and sensitive method has been developed and validated for the determination Ketotifen fumarate . A method was described for the determination of Ketotifen Fumarate in pure form or pharmaceutical formulations, a colored ion-pair complex formation reaction among ketotifen fumarate and acid-dye bromophenol blue at pH 3.0 was used for the colorimetric determination of the drug. The complex formed was extracted into chloroform and the maximum absorbance of the solution was measured at 413 nm against blank. The calibration curve calculated obey Beer's law over the concentration range of 0.4-16 μg/ml and the regression equation was A=0.069
... Show More