Preferred Language
Sort By
Filters
Filter
Publication
Publication Date
Indexed In
Publication Date
Wed Oct 25 2023
Journal Name
2023 Ieee 8th International Conference On Engineering Technologies And Applied Sciences (icetas)
Vibration Characteristics of Perforated Plate using Experimental and Numerical Approaches
...Show More Authors

Vibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Mar 10 2017
Journal Name
Superconductor Science And Technology
Conceptual designs of conduction cooled MgB<sub>2</sub> magnets for 1.5 and 3.0 T full body MRI systems
...Show More Authors

View Publication
Scopus (54)
Crossref (51)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Composite Structures
Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire
...Show More Authors

View Publication
Scopus (37)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Case Studies In Thermal Engineering
The temperatures distributions of a single-disc clutches using heat partitioning and total heat generated approaches
...Show More Authors

View Publication
Scopus (33)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system
...Show More Authors

According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through

... Show More
View Publication
Scopus (12)
Crossref (4)
Scopus Crossref
Publication Date
Thu Mar 25 2021
Journal Name
Dental Materials Journal
Mechanical and thermal stress evaluation of PEEK prefabricated post with different head design in endodontically treated tooth: 3D-finite element analysis
...Show More Authors

View Publication
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Tue Jun 18 2024
Journal Name
2024 Ieee 33rd International Symposium On Industrial Electronics (isie)
An Adaptive Integral Sliding Mode Control for Disturbed Servo Motor Systems
...Show More Authors

Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Mar 08 2024
Journal Name
Applied System Innovation
Adaptive Active Disturbance Rejection Control for Vehicle Steer-by-Wire under Communication Time Delays
...Show More Authors

In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance est

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Mar 26 2024
Journal Name
World Electric Vehicle Journal
Fast Finite-Time Composite Controller for Vehicle Steer-by-Wire Systems with Communication Delays
...Show More Authors

The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Computers In Biology And Medicine
Model based smooth super-twisting control of cancer chemotherapy treatment
...Show More Authors

Chemotherapy is one of the most efficient methods for treating cancer patients. Chemotherapy aims to eliminate cancer cells as thoroughly as possible. Delivering medications to patients’ bodies through various methods, either oral or intravenous is part of the chemotherapy process. Different cell-kill hypotheses take into account the interactions of the expansion of the tumor volume, external drugs, and the rate of their eradication. For the control of drug usage and tumor volume, a model based smooth super-twisting control (MBSSTC) is proposed in this paper. Firstly, three nonlinear cell-kill mathematical models are considered in this work, including the log-kill, Norton-Simon, and hypotheses subject to parametric uncertainties and exo

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Sep 04 2023
Journal Name
2023 International Conference On Advanced Mechatronic Systems (icamechs)
Performance Analysis of Finite-Time Generalized Proportional Integral Observer for Uncertain Brunovsky Systems
...Show More Authors

This paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Ieee Transactions On Industrial Electronics
Singular Perturbation-Based Adaptive Integral Sliding Mode Control for Flexible Joint Robots
...Show More Authors

The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha

... Show More
View Publication
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Sliding mode control based on high-order extended state observer for flexible joint robot under time-varying disturbance
...Show More Authors

Abstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
International Journal Of Mechanical Engineering And Technology (ijmet)
INVESTIGATION THE PROPERTIES OF SILICONE RUBBER BLEND REINFORCED BY NATURAL NANOPARTICLES AND UHMWPE FIBER
...Show More Authors

Many faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when add

... Show More
View Publication Preview PDF
Scopus (6)
Scopus
Publication Date
Wed Jul 12 2023
Journal Name
Energies
Finite Time Disturbance Observer Based on Air Conditioning System Control Scheme
...Show More Authors

A novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Nov 22 2023
Journal Name
Actuators
Practical Adaptive Fast Terminal Sliding Mode Control for Servo Motors
...Show More Authors

Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further s

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Isa Transactions
Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component
...Show More Authors

The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated

... Show More
View Publication
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Jul 25 2022
Journal Name
2022 Ieee 20th International Conference On Industrial Informatics (indin)
Robust Continuous Sliding Mode Controller for Uncertain Canonical Brunovsky Systems Using Reduced Order Extended State Observer
...Show More Authors

A reduced-order extended state observer (RESO) based a continuous sliding mode control (SMC) is proposed in this paper for the tracking problem of high order Brunovsky systems with the existence of external perturbations and system uncertainties. For this purpose, a composite control is constituted by two consecutive steps. First, the reduced-order ESO (RESO) technique is designed to estimate unknown system states and total disturbance without estimating an available state. Second, the continuous SMC law is designed based on the estimations supplied by the RESO estimator in order to govern the nominal system part. More importantly, the robustness performance is well achieved by compensating not only the lumped disturbance, but also its esti

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Ieee Transactions On Systems, Man, And Cybernetics: Systems
Design of Robust Terminal Sliding Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct

... Show More
View Publication
Scopus (57)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Mon Dec 19 2022
Journal Name
Drones
Practically Robust Fixed-Time Convergent Sliding Mode Control for Underactuated Aerial Flexible JointRobots Manipulators
...Show More Authors

The control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estim

... Show More
View Publication
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Cascaded-Extended-State-Observer-Based Sliding-Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th

... Show More
View Publication
Scopus (98)
Crossref (95)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Case Studies In Thermal Engineering
Robust composite temperature control of electrical tube furnaces by using disturbance observer
...Show More Authors

As one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller

... Show More
View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems
...Show More Authors

In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota

... Show More
View Publication
Scopus (141)
Crossref (129)
Scopus Clarivate Crossref
Publication Date
Fri May 17 2013
Journal Name
Sensors
Evolution of Electroencephalogram Signal Analysis Techniques during Anesthesia
...Show More Authors

Biosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG sig

... Show More
View Publication
Scopus (50)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2012
Journal Name
2012 Ieee-embs Conference On Biomedical Engineering And Sciences
Compatibility of mother wavelet functions with the electroencephalographic signal
...Show More Authors

View Publication
Scopus (23)
Crossref (18)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of 2nd International Multi-disciplinary Conference Theme: Integrated Sciences And Technologies, Imdc-ist 2021, 7-9 September 2021, Sakarya, Turkey
Investigation of the Effect of Diabetes on Lower Limb Muscles with Surface Electromyography (EMG)
...Show More Authors

View Publication
Crossref
Publication Date
Fri Feb 01 2013
Journal Name
Journal Of Applied Research And Technology
Effectiveness of Wavelet Denoising on Electroencephalogram Signals
...Show More Authors

View Publication
Scopus (90)
Crossref (86)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
2017 11th Asian Control Conference (ascc)
Super-twisting based integral sliding mode control applied to a rotary flexible joint robot manipulator
...Show More Authors

In this paper, a single link flexible joint robot is used to evaluate a tracking trajectory control and vibration reduction by a super-twisting integral sliding mode (ST-ISMC). Normally, the system with joint flexibility has inevitably some uncertainties and external disturbances. In conventional sliding mode control, the robustness property is not guaranteed during the reaching phase. This disadvantage is addressed by applying ISMC that eliminates a reaching phase to ensure the robustness from the beginning of a process. To design this controller, the linear quadratic regulator (LQR) controller is first designed as the nominal control to decide a desired performance for both tracking and vibration responses. Subsequently, discontinuous con

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Nov 01 2016
Journal Name
2016 International Conference On Advanced Mechatronic Systems (icamechs)
Hierarchical sliding mode control applied to a single-link flexible joint robot manipulator
...Show More Authors

Trajectory tracking and vibration suppression are essential objectives in a flexible joint manipulator control. The flexible joint manipulator is an under-actuated system, in which the number of control actions is less than the degree of freedom to be controlled. It is very challenging to control the underactuated nonlinear system with two degree of freedom. This paper presents a hierarchical sliding mode control (HSMC) for a rotary flexible joint manipulator (RFJM). Firstly, the rotary flexible joint manipulator is modeled by two subsystems. Secondly, the sliding surfaces for both subsystems are constructed. Finally, the control action is designed based on the Lyapunov function. Computer simulation results demonstrate the effectiveness of

... Show More
View Publication
Scopus (23)
Crossref (11)
Scopus Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Iecon 2017 - 43rd Annual Conference Of The Ieee Industrial Electronics Society
Optimal second order integral sliding mode control for a flexible joint robot manipulator
...Show More Authors

The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S

... Show More
View Publication
Scopus (13)
Crossref (8)
Scopus Crossref