Ag nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.
An expression for the transition charge density is investigated where the deformation in nuclear collective modes is taken into consideration besides the shell model transition density. The inelastic longitudinal form factors C2 calculated using this transition charge density with excitation of the levels for Cr54,52,50 nuclei. In this work, the core polarization transition density is evaluated by adopting the shape of Tassie model together with the derived form of the ground state two-body charge density distributions (2BCDD's). It is noticed that the core polarization effects which represent the collective modes are essential in obtaining a remarkable agreement between the calculated inelastic longitudinal F(q)'s and those of experimen
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
Biomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. Th
... Show MoreLow-pressure capacitively coupled RF discharge Ar plasma has been studied using Langmuir probe. The electron temperature, electron density and Debay length were calculated under different pressures and electrode gap. In this work the RF Langmuir probe is designed using 4MHz filter as compensation circuit and I-V probe characteristic have been investigated. The pressure varied from 0.07 mbar to 0.1 mbar while electrode gap varied from 2-5 cm. The plasma was generated using power supply at 4MHz frequency with power 300 W. The flowmeter is used to control Argon gas flow in the range of 600 standard cubic centimeters per minute (sccm). The electron temperature drops slowly with pressure and it's gradually decreased when expanding the electro
... Show MoreThe current study used extracts from the aloe vera (AV) plant and the hibiscus sabdariffa flower to make Ag-ZnO nanoparticles (NPs) and Ag-ZnO nanocomposites (NCs). Ag/ZnO NCs were compared to Ag NPs and ZnO NPs. They exhibited unique properties against bacteria and fungi that aren't present in either of the individual parts. The Ag-ZnO NCs from AV showed the best performance against E. coli, with an inhibition zone of up to 27 mm, compared to the other samples. The maximum absorbance peaks were observed at 431 nm and 410 nm for Ag NPs, at 374 nm and 377 nm for ZnO NPs and at 384 nm and 391 nm for Ag-ZnO NCs using AV leaf extract and hibiscus sabdariffa flower extract, respectively. Using field emission-scanning electron microscopes (FE-
... Show MoreOne of the most important problems facing the world today is the energy problem. The solution was in finding renewable energy sources such as solar energy. The solar energy applications in Iraq is facing many problems . One of the most important problems is the accumulation of dust on the solar panels surface which causes decreasing its performance sharply. In the present work, a new technique was presented by using two-axis solar tracking system to reduce the accumulated dust on the solar panel surface and compared it with the fixed solar panels which installed at tilt angles 30° and 45°. The results indicated that the maximum losses of the output power due to accumulation of dust on the fixed solar panels is about 31.4% and 23.1% res
... Show MoreIn an attempt to disposal from nuclear waste which threats our health and environments. Therefore we have to find appropriate method to immobilize nuclear waste. So, in this research the nuclear waste (Strontium hydroxide) was immobilized by Carbon nanotubes (CNTs). The Nd-YAG laser with wave length 1064 nm, energy 750 mJ and 100 pulses used to prepare CNTs. After that adding Sr(HO)2 powder to the CNTs colloidal in calculated rate to get homogenous mixing of CNTs-Sr(OH)2. The Sr(HO)2 absorbs carbon dioxide from the air to form strontium carbonate so, the new solution is CNTs-SrCO3. To dry solution putting three drops from the new solution on the glass slides. To investigate the radi
... Show MoreIn the present research, the chemical washing method has been selected using three chelating agents: citric acid, acetic acid and Ethylene Diamine Tetraacetic Acid (EDTA) to remove 137Cs from two different contaminated soil samples were classified as fine and coarse grained. The factors that affecting removal efficiency such as type of soil, mixing ratio and molarity have been investigated. The results revealed that no correlation relation was found between removal efficiency and the studied factors. The results also showed that conventional chemical washing method was not effective in removing 137Cs and that there are further studies still need to achieve this objective.
Using a 940nm diode laser or traditional methods, second-stage implant exposure involves removing soft tissue above the dental implant to expose the implant fixture and complete the implant procedure. This study included twenty-three patients (43.5% of whom were males, and the female percentage was 56.5%), aged between 18 and 70 years, who had at least two implants (3-6 months after implant insertion). Implant exposure was performed in case 1, using the traditional methods of puncture, flap, or incision, and in case 2, using a 940 nm diode laser. The study took place in Baghdad, Iraq. The results showed that the average pain in the laser group was 1.48, which was less than the average pain in the traditional group, which was 3.70. The pa
... Show MoreMandali Basin is located between latitudes (33◦ 39' 00" and 33◦
54' 55") to the north and longitudes (45ο 11' 00" and 45ο 40' 00") to the
east; to the east of Diyala province at the Iraqi-Iranian border; the
basin area is approximately 491 km2.
From the study of climate reality of the basin between 1990-
2013and assessment of the basic climate transactions, it was found
that the annual rate of rainfall is 253.02 mm, the relative humidity
(44.4%), the temperature (21.3 ◦C), wind speed (2.08 m /sec.),
sunshine (8.27 h/day) and evaporation of the basin class (a) (271.98
mm) and corrected potential evapotranspiration (80.03 mm). The
results of the data analysis show that, there are
In this study, polymeric coating was developed by incorporating nano graphene in the polymer blend with applications to oil storage tanks. The oil storage tanks samples were brought from the oil Pipeline Company / Doura refinery in Baghdad. The coating polymer was formed with a blend (epoxy resin and repcoat ZR). The proportion of mixing the mixture was 3:1:1 epoxy resin 21.06 gm: repcoat ZR 10.53 gm: hardener 10.53 gm. The blend/graphene was prepared using in stui-polymerization method with different weight percentage 1, 3, 5, and 7 wt % added to blend. The resulting solution was put in a glass tube on a magnetic stirrer for one hour at a temperature of 40 °C. The result of contact angle and wate
... Show MoreIn the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust siz
In this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreThe nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele
... Show MoreIn recent years, there has been a rapid development in research on high performance ceramics for mechanical, electrical and medical industries. This development will be shown for alumina as a representative for oxide ceramics powders.
Dry–pressing forming technique was used to prepare different ceramic compacts for alumina grafted by polymethacrylate polymers. All Alumina compact were fired firstly at 1200 ◌ْ C, then
at 1600 ◌ْ C.
Mechanical strength was examined in different means, some
depends on compression and other depends on impact. Hardness was
also measured .The results obtained were compared with that of
Alumina compact prepared under the same condition from Alumina
especially made for pressing .
The optical transmission and absorption spectra in UV-VIS were recorded in the wavelength range 350-800 nm for different glass compositions in the system: (CuO)x (PbO)50-x (Bi2O3)50 (x=2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0). Absorption coefficient {α (λ)}, optical energy gap (Eopt), refractive index (n), optical dielectric constant (ε`), Urbach energy (Ee), constant B and ratio of carrier concentration to the effective mass (N/m) have been reported. The effects of compositions of glasses on these parameters have been discussed. It has been indicated that a small compositional modification of the glasses lead to an important change in all the optical properties including non-linear behavior. The optical parameters were found to b
... Show MoreThe purpose of our work is to report a theoretical study of electrons tunneling through semiconductor superlattice (SSL). The (SSL) that we have considered is (GaN/AlGaN) system within the energy range of ε < Vo, ε = Vo and ε > Vo, where Vo is the potential barrier height. The transmission coefficient (TN) was determined using the transfer matrix method. The resonant energies are obtained from the T (E) relation. From such system, we obtained two allowed quasi-levels energy bands for ε < VO and one band for ε VO.
Chalcopyrite thin films were one-step potentiostatically deposited onto stainless steel plates from aqueous solution containing CuSO4, In2(SO4)3 and Na2S2O3.The ratio of (In3+:Cu2+) which involved in the solution and The effect of cathodic potentials on the structural had been studied. X-ray diffraction (XRD) patterns for deposited films showed that the suitable ratio of (In3+:Cu2+) =6:1, and suitable voltage is -0.90 V versus (Ag/AgCl) reference electrode
In this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
The electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.
Films of pure Poly (methyl methacrylate) PMMA and Iron chromate doped PMMA have been prepared using casting method. Transmission and absorptance spectra have been recorded in the wavelength range (300-900) nm, in order to calculate, single oscillator energy, dispersion energy proposed by Wemple - DiDomenico model, average oscillator strength, average oscillator wavelength. The refractive index data at infinite wavelength which was found to obey single oscillator model which was found to increase from 2.27-2.56 as the doping percentage increase. The decreasing in the optical energy gap which was found according to Tauc model were (3.74-3.63) eV , is in good agreement with that obtained by wimple-DiDomenico model. The inverse behavior comp
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
Ferrite with general formula Ni1-x Cox Fe2O4(where x=0.0.1,0.3,0.5,0.7, and 0.9), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns. The lattice parameter results were (8.256-8.299 °A). Generally, x -ray density increased with the addition of Cobalt and showed value between (5.452-5.538gm/cm3). Atomic Force Microscopy (AFM) showed that the average grain size and surface roughness was decreasing with the increasing cobalt concentration. Scanning Electron Microscopy images show that grains had an irregular distribution and irregular shape. The A.C conductivity was found to increase with the frequency and the addition of Cobal
... Show MoreIn this research, the water quality of the potable water network in
Al-Shuala Baghdad city were evaluated and compare them with the
Iraqi standards (IQS) for drinking water and World Health
Organization standards (WHO), then water quality index (WQI) were
calculator: pH, heavy metals (lead, cadmium and iron), chlorides,
total hardness, turbidity, dissolved oxygen, total dissolved solid and
electrical conductivity. Water samples are collected weekly during
the period from February 2015 to April 2015 from ten sites. Results
show that the chlorides, total dissolved solid and electrical
conductivity less than acceptable limit of standards, but total
hardness and heavy metals in some samples higher than acceptabl
Activities associated with mining of uranium have generated significant quantities of waste materials containing uranium and other toxic metals. A qualitative and quantitative study was performed to assess the situation of nuclear pollution resulting from waste of drilling and exploration left on the surface layer of soil surrounding the abandoned uranium mine hole located in the southern of Najaf province in Iraq state. To measure the specific activity, twenty five surface soil samples were collected, prepared and analyzed by using gamma- ray spectrometer based on high counting efficiency NaI(Tl) scintillation detector. The results showed that the specific activities in Bq/kg are 37.31 to 1112.47 with mean of 268.16, 0.28 to 18.57 with
... Show MoreIndium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreZnO thin films have been prepared by pulse laser deposition technique at room temperatures (RT). These films were deposited on GaAs substrate to form the ZnO/GaAs heterojunction solar cell. The effect of annealing temperatures at ( RT,100, 200)K on structural and optical properties of ZnO thin films has been investigated. The X-ray diffraction analysis indicated that all films have hexagonal polycrystalline structure. AFM shows that the grains uniformly distributed with homogeneous structure. The optical absorption spectra showed that all films have direct energy gap. The band gap energy of these films decreased with increasing annealing temperatures. From the electrical properties, the carriers have n-type conductivity. From
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec