Preferred Language
Articles
/
zRcjCJABVTCNdQwChoI0
The Use of Logistic Regression Model in Estimating the Probability of Being Affected By Breast Cancer Based On the Levels of Interleukins and Cancer Marker CA15-3
...Show More Authors

Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased or not.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
New Combined Technique for Fingerprint Image Enhancement
...Show More Authors

This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one

... Show More
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Hybrid vs Ensemble Classification Models for Phishing Websites
...Show More Authors

Phishing is an internet crime achieved by imitating a legitimate website of a host in order to steal confidential information. Many researchers have developed phishing classification models that are limited in real-time and computational efficiency.  This paper presents an ensemble learning model composed of DTree and NBayes, by STACKING method, with DTree as base learner. The aim is to combine the advantages of simplicity and effectiveness of DTree with the lower complexity time of NBayes. The models were integrated and appraised independently for data training and the probabilities of each class were averaged by their accuracy on the trained data through testing process. The present results of the empirical study on phishing websi

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Odontogenic Keratocyst
...Show More Authors

Purpose: to review in detail various aspects of odontogenic keratocyst, emphasizing recent nomenclature, clinical, histopathological, recurrence, and management of odontogenic keratocyst.

Methods: To achieve the objective of this review, a manual search was done in hard copy books of oral and maxillofacial pathology, and an electronic search was done in the google website, oral and maxillofacial pathology E-books, virtual database sites, such as PubMed, Research Gate, Academia, and Google scholar using the descriptors: odontogenic cyst, kerato odontogenic tumor, odontogenic keratocyst, and jaws cystic lesion. The eligibility criteria for selecting articles were: to be in the English language, stu

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Aug 16 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Laparoscopic Low Anterior Resection using Endo GIA Radial Reload Stapler: early results (case series)
...Show More Authors

Background: Laparoscopic colectomy is performed in an increasing number of institutions as a minimally invasive treatment for benign and malignant large bowel disease. Laparoscopic rectal surgery enables more accurate visualization of the anatomical structure in the pelvic cavity for selected patients with tumors in the middle and low rectum.
Objectives: To determine the early outcome of patient who underwent laparoscopic low anterior resection using radial reload stapler.
Patients and methods: This is a prospective study of 8 patients with low or mid rectal cancer who underwent a laparoscopic low anterior resection between January 2017 till June 2017 at Saint Raphael hospital.
Results: Eight patients underwent elective laparosc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Tourism Companies Assessment via Social Media Using Sentiment Analysis
...Show More Authors

In recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jun 14 2022
Journal Name
International Journal Of Health Sciences
Knee osteoarthritis
...Show More Authors

Osteoarthritis (OA) is recognized as a main public health difficult. It is one of the major reasons of reduced function that diminishes quality of life worldwide. Osteoarthritis is a very common disorder affecting the joint cartilage. As there is no cure for osteoarthritis, treatments currently focus on management of symptoms. Pain relief, improved joint function, and joint stability are the main goals of therapy. The muscle weakness and muscle atrophy contribute to the disease process. So, rehabilitation and physiotherapy were often prescribed with the intention to alleviate pain and increase mobility. Medical therapy provides modest benefits in pain reduction and functional improvement; however, non-steroidal anti-inflammatory dru

... Show More
View Publication
Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Intrusion Detection System Using Data Stream Classification
...Show More Authors

Secure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Enhancement Digital Forensic Approach for Inter-Frame Video Forgery Detection Using a Deep Learning Technique
...Show More Authors

    The digital world has been witnessing a fast progress in technology, which led to an enormous increase in using digital devices, such as cell phones, laptops, and digital cameras. Thus, photographs and videos function as the primary sources of legal proof in courtrooms concerning any incident or crime. It has become important to prove the trustworthiness of digital multimedia. Inter-frame video forgery one of common types of video manipulation performed in temporal domain. It deals with inter-frame video forgery detection that involves frame deletion, insertion, duplication, and shuffling. Deep Learning (DL) techniques have been proven effective in analysis and processing of visual media. Dealing with video data needs to handle th

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref