In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreFor many years, the construction industry damages have been overlooked such as unreasonable consumption of resources in addition to producing a lot of construction waste but with global awareness growth towards the sustainable development issues, the sustainable construction practices have been adopted, taking into account the environment and human safety. The research aims to propose a management system for construction practices which could be adopted during constructing different types of sustainable buildings besides formulating flowcharts which clarify the required whole phases of sustainable buildings life cycle. The research includes two parts: theoretical part which generally ,handles the sustainability concepts at construction i
... Show MoreThe work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with
The research aimed: 1. Definition of family climate for the university students. 2. Definition of statistical significance of differences in family climate variable depending on the sex (males - females) and specialization (Scientific - humanity). 3. Definition of academic adjustment for university students. 4. Definition of correlation between climate and academic adjustment. The research sample formed of (300) male and female students by (150) male of scientific and humanitarian specialization and (150) female of scientific and humanitarian specialization randomly selected from the research community. To achieve the objectives of the research the researcher prepared a tool to measure family climate. And adopted the measure (Azzam 2010)
... Show MoreLuminescent sensor membranes and sensor microplates are presented for continuous or high-throughput wide-range measurement of pH based on a europium probe.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Abstract
Natural gas is characterized by features that made from it a fuel and a raw material for many industries. Deepening its position as a favorite fossil supplier between other types of fossil fuel is the efficiency, diversity of its uses, low costs and compatibility with the environment which leads to increasing of its uses then increased global demand. So, the natural gas must take its place as an important resource in Iraq and participate the oil in the economic development process of building and financing of the general budget.
Iraq is planning to continue of increasing the export capacity of raw oil to meet ambitious production targets emanating from the mai
... Show MoreThe inhibitive action of Phenyl Thiourea (PTU) on the corrosion of mild steel in strong Hydrochloric acid, HCl, has been investigated by weight loss and potentiostatic polarization. The effect of PTU concentration, HCl concentration, and temperature on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in 5-7N HCl at temperatures 30, 40 and 50 °C, in absence and presence of PTU. It was verified that all variables and their interaction were statistically significant. The adsorption of (PTU) is found to obey the Langmuir adsorption isotherm. The effect of temperature on th
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More