BACKGROUND: The degree of the development of coronary collaterals is long considered an alternate – that is, a collateral – source of blood supply to an area of the myocardium threatened with vascular ischemia or insufficiency. Hence, the coronary collaterals are beneficial but can also promote harmful (adverse) effects. For instance, the coronary steal effect during the myocardial hyperemia phase and that of restenosis following coronary angioplasty. OBJECTIVES: Our study explores the contribution of coronary collaterals – if any exist – while considering other potential predictors, including demographics and medical history, toward the left ventricular (LV) dysfunction measured through the LV ejection fraction (LVEF). METHODS: Our cross-sectional design study used convenience sampling of 100 patients (n = 100; a male-to-female ratio of 4:1). We conducted frequentist inference statistics using IBM-SPSS version 24 and Microsoft Office Excel 2016 with the analysis ToolPak plugin; we ran parallel neural networks (supervised machine learning (ML)) and a two-step clustering (non-supervised ML) for robust conjoint inference with frequentist statistics. RESULTS: The past incidents of myocardial infarction (p = 0.036) and gender (p = 0.072) influenced the LVEF; both are significant predictors at a 90% confidence interval. We found that gender and past incidents of MI influenced the LVEF regardless of the status of coronary collaterals. Our study did not yield any positive or significant findings concerning the status of coronary collaterals or the coronary circulation dominance patterns. CONCLUSION: Regardless of the status of coronary collaterals, we verified that the female gender is protective of the LV function, contrary to the past infarction incidents that predispose to a deteriorated LV function. Our study’s innovation relates to its status as the first study from India to explore the coronary collaterals and the ejection fraction while incorporating frequentist statistics and narrow artificial intelligence to infer reliable results.
HTH Ali Tarik Abdulwahid , Ahmed Dheyaa Al-Obaidi , Mustafa Najah Al-Obaidi, eNeurologicalSci, 2023
Background: Loss of tooth structure may be due to tooth to tooth contact and presence of abrasive components in the work environment. The aim of study was planned to evaluate the occurrence of dental attrition among Cement factory workers. Material and Method: The Sample included all workers chronically exposed to cement dust in the EL-Kubaisa cement factory (95 workers). A comparative group of workers (97) were non-exposed to cement dust was selected. All workers were males in gender with age range (25-55) years. The assessment of tooth wear was based on the criteria of smith and knight, 1984. Results: The maximum tooth wear score for exposed workers was 84.2% while non exposed workers was 38.1%,with statistical differences between two g
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show More