Knowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine the optimal solution. The quality curve is useful for assessing the model's reliability and data depth. Gamma rays and traditional logs both show that calcite and dolomite are the most common matrix minerals in the Mishrif Formation. The clay minerals present in the formation are smectite, illite, and glauconite. Accurate detection of mineral composition resulted in improved identification of fluid content, particularly free and bound water saturation, and, by extension, hydrocarbon saturation.
The vegetable cover plays an important role in the environment and Earth resource sciences. In south Iraq, the region is classified as arid or semiarid area due to the low precipitations and high temperature among the year. In this paper, the Landat-8 satellite imagery will be used to study and estimate the vegetable area in south Iraq. For this purpose many vegetation indices will be examined to estimate and extract the area of vegetation contain in and image. Also, the weathering parameters must be investigated to find the relationship between these parameters and the arability of vegetation cover crowing in the specific area. The remote sensing packages and Matlab written subroutines may be use to evaluate the results.
In any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by
... Show MoreAli AL-Gharbi area lies to the northeast of Missan Governorate, southeast of Iraq. The meteorological data recorded in Ali AL-Gharbi station for the period (1994-2014) were used to assess the climatic condition of the study area, it was found that the monthly mean of rainfall is (15.35 mm), relative humidity (43.95 %), the temperature (24.50 C◦), wind speed (4.35 m/sec) and the strongest and most frequent winds are the northwest, sunshine (8.54 h/day) and evaporation (305.73 mm).The results of the data analysis show that, the climate of study area is characterized by dry and relatively hot in summer, and cold with low rain in winter. This study shows that, there is water surplus of (35.69 %) of the total rainfall amount which is equivalen
... Show MoreIn this paper, the discriminant analysis is used to classify the most wide spread heart diseases known as coronary heart diseases into two groups (patient, not patient) based on the changes of discrimination features of ten predictor variables that we believe they cause the disease . A random sample for each group is employed and the stepwise procedures are performed in order to delete those variables that are not important for separating the groups. Tests of significance of discriminant analysis and estimating the misclassification rates are performed
Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreVegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a
... Show MoreThis study is concerned with the recent changes that occurred in the last three years (2017-2019) in the marshes region in southern Iraq as a result of the changes in the global climate, the study included all the water bodies in the five governorates that are located in the southern regions of Iraq (Wasit, Maysan, Dhi-Qar, Qadisiyah and Basrah), which represent the marshes lands in Iraq. Scenes of the Landsat 8 satellite are used to create a mosaic to cover the five governorates within a time window with the slightest difference between the date of the scene capture, not to exceed 8 days. The results of calculating the changes in water areas were obtained using the classifier support vector machine, where high accuracy ratios were recorded
... Show MoreVegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a low v
... Show MoreExtracting moving object from video sequence is one of the most important steps
in the video-based analysis. Background subtraction is the most commonly used
moving object detection methods in video, in which the extracted object will be
feed to a higher-level process ( i.e. object localization, object tracking ).
The main requirement of background subtraction method is to construct a
stationary background model and then to compare every new coming frame with it
in order to detect the moving object.
Relied on the supposition that the background occurs with the higher appearance
frequency, a proposed background reconstruction algorithm has been presented
based on pixel intensity classification ( PIC ) approach.