This work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different videos at different bitrates. Meanwhile, at the proposed distribution mechanism, a predetermined threshold value is selected for lower and upper levels of playout outage probability. Then, the control unit at the base station will distribute the radio resources and decide the minimum rate requirement based on clients’ urgency categories. Simulation results showed that the VBF grantees fairness of resources distribution among different clients within the same cellular network while minimizing the interruption duration and controlling the video buffer at an acceptable level. Also, the results showed that the system throughput of the proposed framework outperforms other existing algorithms such as playout buffer and discontinuous reception aware scheduling (PBDAS), maximum carrier-to-interface ratio (MAX-CIR), and proportional fair (PF) due to enhancing the quality of experience for video streaming by increasing the radio resources in fairness manner.
Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].