Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes delay and discontinuity of data flow. To overcome delay or interruption problems, we utilized the Software-Defined Network (SDN), Machine Learning (ML), and Blockchain (BC) techniques, which support the Tor network to intelligently speed up exchanging the public key via the proactive processing of the Tor network security management information. Consequently, the combination network (ITor-SDN) keeps data flow continuity to a Tor client. We simulated and emulated the proposed network by using Mininet and Shadow simulations. The findings of the performed analysis illustrate that the proposed network architecture enhances the overall performance metrics, showcasing a remarkable advancement of around 55%. This substantial enhancement is achieved through the seamless execution of the innovative ITor-SDN network combination approach.
Blockchain technologies have grown in popularity over the last few years, with various experts touting the technology's potential applications in a range of businesses, markets, organizations, and governmental institutions. In the brief history of blockchain, an astounding number of incredible implementations have been done in terms of how it may be utilized and the potential effect it may have on a range of sectors. And, because of the great number and complexity of these characteristics, addressing the blockchain's potential and complications can be difficult, especially when seeking to address its purpose and fit for a certain activity. The blockchain's practical skills in fixing multiple challenges that are currently prevent
... Show MoreThe last two decades have seen a marked increase in the illegal activities on the Dark Web. Prompt evolvement and use of sophisticated protocols make it difficult for security agencies to identify and investigate these activities by conventional methods. Moreover, tracing criminals and terrorists poses a great challenge keeping in mind that cybercrimes are no less serious than real life crimes. At the same time, computer security societies and law enforcement pay a great deal of attention on detecting and monitoring illegal sites on the Dark Web. Retrieval of relevant information is not an easy task because of vastness and ever-changing nature of the Dark Web; as a result, web crawlers play a vital role in achieving this task. The
... Show MoreRecently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreObjective: To know the impact of social networks on the mental health of adolescents in the city of Diwaniyah.
Methodology: A descriptive cross-sectional study was conducted on adolescents in preparatory schools in ALDiwaniyah
City Center, for the period from Jun 26, 2015 through to October 20, 2015. The schools were
selected from using Probability sampling (240 random samples) six schools were selected from 32 schools (20 %
from total number) the schools were chosen by writing the names of all schools on a pieces of paper and put in
bags. Then, selected six schools random, three boys schools (2 preparatory and 1 secondary) three girls schools
(2 preparatory and 1 secondary), then I chose the sample the students in grad
The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est
... Show MoreThe current research aims to highlight the role of social networking sites in the dissemination of scientific knowledge and the importance of their use by researchers, and the researcher relied on the descriptive approach and the survey method. Among the data collection tools are the questionnaire and paper and electronic sources. Among the most important results that the research came out with: The number of the subscribers’ sites was (14) sites, and the most used social sites for receiving and Disseminating Scientific knowledge are: Facebook, Telegram, WhatsApp, Viber, Messenger and YouTube. All respondents receive tacit knowledge (Exchange of Messages and News) through social networking sites, and few of them do not receive explicit kn
... Show MoreReservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use
... Show MoreThe consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen
... Show More