Blockchain technology relies on cryptographic techniques that provide various advantages, such as trustworthiness, collaboration, organization, identification, integrity, and transparency. Meanwhile, data analytics refers to the process of utilizing techniques to analyze big data and comprehend the relationships between data points to draw meaningful conclusions. The field of data analytics in Blockchain is relatively new, and few studies have been conducted to examine the challenges involved in Blockchain data analytics. This article presents a systematic analysis of how data analytics affects Blockchain performance, with the aim of investigating the current state of Blockchain-based data analytics techniques in research fields and exploring how specific features of this new technology may transform traditional business methods. The primary objectives of this study are to summarize the significant Blockchain techniques used thus far, identify current challenges and barriers in this field, determine the limitations of each paper that could be used for future development, and assess the extent to which Blockchain and data analytics have been effectively used to evaluate performance objectively. Moreover, we aim to identify potential future research paths and suggest new criteria in this burgeoning discipline through our review. Index Terms— Blockchain, Distributed Database, Distributed Consensus, Data Analytics, Public Ledger.