The application of pultruded (GFRP) composite has become increasingly prominent in civil infrastructure projects. This study provides a comprehensive analysis of experimental and numerical studies conducted on the mechanical characteristics of (GFRP) composites across various temperature conditions, encompassing ambient and fire scenarios. The compilation comprises over 100 scholarly articles that examine the mechanical behavior of (GFRP) materials, specifically emphasizing their tensile and compressive strengths, showed the mechanical properties of (GFRP) materials are commonly compromised when exposed to high temperatures that approach or surpass the resin's glass transition temperature (Tg). In contrast, temperatures that are lower than the glass transition temperature (Tg) have the potential to cause minimal degradation. This study provides that at temperatures exceeding 450°C, the tensile strength of (GFRP) bars experiences a significant decline, with a retention rate of less than 20%. Similarly, GFRP laminates or sheets exhibit a substantial loss in strength, ranging from 68% to 94%, when exposed to temperatures exceeding 400°C. Also, the optimal model and the closest results to practical experiments in the case of compression are the models (Mahieux and wang). This review provides an in-depth understanding of the GFRP composite's behavior after being subjected to elevated temperatures. The results presented in this literature review could be used as a base for developing predictive models related to GFRP composite behavior after being subjected to elevated temperatures.
Radiotherapy is medical use of ionizing radiation, and commonly applied to the cancerous tumor because of its ability to control cell growth. The amount of radiation used in photon radiation therapy called dose (measured in grey unit), which depend on the type and stage of cancer being treated. In our work, we studied the dose distribution given to the tumor at different depths (zero-20 cm) treated with different field size (4×4- 23×23 cm). Results show that the deeper treated area has less dose rate at the same beam quality and quantity. Also it has been noted increasing in the field increasing in the depth dose at the same depth even if the radiation energy is constant. Increasing in radiation dose attributed to the scattere
... Show MoreChoosing an appropriate impression material is a challenge for many dentists, yet an essential component to provide an excellent clinical outcome and improve productivity and profit. The purpose of present study was to compare wettability, tear strength and dimensional accuracy of three elastomeric impression materials, with the same consistencies (light-body). Three commercially available light body consistency and regular set 3M ESPE Express polyvinylsiloxane (PVS), 3M ESPE Permadyne polyether (PE), and Identium (ID), impression materials were comparedTear strength test, contact angle test and linear dimensional accuracy were evaluated for three elastic impression material. Among the three experimental groups PE impression materia
... Show MoreObjective: The approximate life span of a silicone maxillofacial prosthesis is as short as1.5–2 years of clinical service, then a new prosthesis should be fabricated. The most common reasonfor re-making the prosthesis is silicone mechanical properties degradation. The aim of this studywas to assess some mechanical properties of VST-30 silicone for maxillofacial prostheses after addi-tion of intrinsic pigments.Methods: Two types of intrinsic pigments (rayon flocking and burnt sienna); each of them wasincorporated into silicone. One hundred and twenty samples were prepared and split into 4 groupsaccording to the conducted tests (tear strength, hardness, surface roughness, and tensile strengthand elongation percentage) with 30 samples for ea
... Show MoreThe excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MoreThis study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high
... Show MoreIntroduction: Syphilis is a sexually transmitted disease, that may be transferred from mothers to infants during pregnancy if it is left untreated. Method: This study was conducted among 65 women who suffered from recurrent abortions in Iraq. Syphilis screening recombinant (IgM + IgG) level by ELISA, RADIM (Italy) and rapid plasma reagin (RPR) (positive and negative results) tests were used to analyse the data. Results: A non-significant association was observed with age (p=0.989), and the number of healthy births (p=0.643). Non-significant differences were observed in comparisons between smoker and non-smoker percentages in the study group. The rapid test for syphilis confirmation was applied using Rapid Plasma Reagin (RPR) tests.
... Show More