Orthodontic wires facilitate the required dental adjustments in the context of orthodontic therapy. The archwire has played a crucial role in orthodontic treatment, and the increasing emphasis on aesthetic preferences from patients, as well as the development of composite and ceramic brackets, have prompted investigations into aesthetic archwires that complement these brackets. Orthodontic wires are produced using a diverse range of materials. The utilisation of all available wire types can improve patient comfort, decrease chairside time, and shorten the overall duration of treatment. The individual clinician must possess comprehensive knowledge and comprehension of the various requirements and alternatives throughout the therapeutic process. This article provides an overview of the history of materials utilised in producing orthodontic aligning archwires, the latest advancements in these materials currently accessible in the market, and the future of archwire production.
This study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all complexes of the (Cr3+, Co2+, Cu2+). conductivity measurement shows t
... Show MoreThe reaction of methyldopa with o-vanillin in refluxing ethanol afforded Schiff base and characterized through physical analysis with a number of spectra also the study of biological activity. The geometry of the Schiff base was identified through using (C.H.N) analysis, Mass, 1H-NMR, FT-IR, UV-Vis spectroscopy. Metal complexes of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ with Schiff base have been prepared in the molar ratio 2:1 (Metal:L), (L = Schiff base ligand) except Hg2+ at molar ratio 1:1 (Hg:L). The prepared complexes were characterized by using Mass, FT-IR and UV-Vis spectral studies, on other than magnetic properties and flame atomic absorption, conductivity measurements. According to the results a dinuclear octahedral geo
... Show MoreThis study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all
... Show MoreThis work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreOur recent work displays the successful preparation of Schiff_bases that carried out between hexane-2,5-dione and 2 moles of (Z)-3-hydrazineylideneindolin-2-one forming in Schiff-bases-(L), Which in turn allowed combining with each of the next metal ions: (M2+) = Ni, Mn, Zn, Cu and Co forming complexes_ in high stability. The formation of resulting Schiff_ bases (L) is detected spectrally using LC_Mss which gave approximately matching results with theoretical incomes, 1HNMR proves the founding of doublet signal of (2H) for 2NH, FTIR indicates the occurrence of two interfered imine bands and UV-VIS mean is also indecates the formation of ligand. On the other hand, complexes-based-Schiff were characterized using the s
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreAbstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show MoreBackground: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left u
... Show More