Preferred Language
Articles
/
qha3_IoBVTCNdQwCb8Z8
Broad‐ranging review: configurations, membrane types, governing equations, and influencing factors on microbial desalination cell technology
...Show More Authors
Abstract<p>Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic movement. According to assessments, recent investigations on MDC configurations have led to significant changes in their operating characteristics, as well as their design and operational factors. Additionally, the study notes the expanding uses of MDC in bioremediation, nutrient recovery, water softening, and value‐added chemical manufacturing. Significant results show that the MDC system produced outstanding desalination without the need for external power, in addition to achieving wastewater treatment and energy recovery without the need for intermediary processes. When it comes to its practical application, some of the technical obstacles include keeping pH stable in cathodic and anodic fluids, increasing internal resistance using catalysts as electrode fillers, along with issues of biofouling and durability. Although MDC technology is currently being developed and scaled up, additional research on membrane fouling avoidance, material feasibility, electron transport kinetics, growth of microorganisms, and catalyst durability is needed. © 2022 Society of Chemical Industry (SCI).</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2013
Journal Name
Photonics &amp; Lasers In Medicine
The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations/Die Beurteilung von pathologischen Veränderungen der Hirndurchblutung bei hypertensiven Ratten mit Stress-induzierten intrakraniellen Blutungen mittels Doppler-OCT: Besonderheiten von arteriellen und venösen Veränderungen
...Show More Authors
Abstract<p>Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst</p> ... Show More
View Publication
Scopus (13)
Crossref (2)
Scopus Crossref