Preferred Language
Articles
/
qYamo4YBIXToZYAL1ZtX
Kinetic, thermodynamic, and equilibrium biosorption of Pb(II), Cu(II), and Ni(II) using dead mushroom biomass under batch experiment
...Show More Authors

In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10−5, 4.45× 10−6, and 1.12× 10−6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.

Crossref