Preferred Language
Articles
/
qYaksIYBIXToZYALn6ru
Fresh and Hardened Properties of Nano Self-Compacting Concrete with Micro and Nano Silica
...Show More Authors
Abstract<p>Self-compacting concrete (SCC) has undergone a remarkable evolution recently based on the results from several studies that have indicated the chain of benefits SCC provides. Micro and nano materials used as mineral additives in SCC offer several high-performance properties, and this research studies the effects of micro silica (MS) (10%, used as a reference) and colloidal nano-silica (CNS) (2.5%, 5%, 7.5%, and 10%) on the fresh and hardened properties of SCC. All mixtures were estimated using flow, L-box, and V-funnel tests to examine workability and compressive strength, modulus of elasticity and tensile strength as hardened properties. The use of CNS increased the overall compressive strength compared to the reference mixture, with the average increase for 28 days being 41%. The discoveries of this work offer insight into the creation of volitional mineral admixtures for improving the toughness attributes of SCC, increasing enforcement, and offering a more maintainable and practical material.</p>
Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Comparison study of some mechanical properties of micro and nano silica EP composites
...Show More Authors

The effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Producing Green Concrete with Plastic Waste and Nano Silica Sand
...Show More Authors

Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste r

... Show More
Crossref (9)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Engineering, Technology & Applied Science Research
Producing Green Concrete with Plastic Waste and Nano Silica Sand
...Show More Authors

Abstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste

... Show More
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
The Effects of Maximum Attapulgite Aggregate Size and Steel Fibers Content on Fresh and Some Mechanical Properties of Lightweight Self Compacting Concrete
...Show More Authors

The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

         This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str

... Show More
View Publication Preview PDF
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
Transverse Direction Loading Effect on the Elasticity and Strength of Micro and Nano Silica Oxide Composites
...Show More Authors

      Using three-point bending experiments,  the effect of the particle size of SiO2 on the flexural properties of epoxy composites was investigated. Young modulus and flexural strength were studied for different weight percentage of filler  (2,4,6,8 and 10) wt%.The size of SiO2 particles varied from micro (100um) to nano (12nm) .

Flexural strength and  Young modul were found to increase with the filler content, but when the particle size decreased to the nanoscale, the  Young module  increased. Flexural strength was higher for microcomposites than nanocomposites.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Effect of Water on Some Mechanical Properties of Epoxy Blends Reinforced With Different Weight Fractions of Nano Titanium Oxide and Nano Silica
...Show More Authors

Polymer composites were prepared using epoxy resin (EP) and unsaturated polyester (UPE) as a blend matrices, which were mixed together in different percentages (starting from 90:10) of (epoxy/polyester) respectively, and ending with (50:50) of (epoxy/polyester). The optimum mixing ratio (OMR) of the components was decided upon the results of the impact strength value of these blending ratio, which showed the highest value of (16.3) KJ/m2 for the blending ratio (80:20) of (EP/UPE) respectively.
The blend with (OMR) was chosen to be reinforced with three different weight fractions of reinforcement; the 1st one was reinforced with nano titanium oxide (TiO2) with a weight fraction (2% wt.), the 2nd one was reinforced with both nano (TiO2)

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Effect of Local Feldspar on the Properties of Self Compacting Concrete
...Show More Authors

This research of using Feldspar in the production self compacting concrete (SCC) ( 5,10,15 )% as partial replacement by weight of cement .In this research some of fresh properties of SCC ( slump flow used V-funnel test and filling ability used ( U- box test ) for concrete mixes and also some of the harden properties of SCC ( compressive and flexural tests ). The research results showed that negative effect of Feldspar on the fresh properties of self compacting concrete but the positive effect of Feldspar on the harden properties of self compacting concrete .

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil
...Show More Authors

This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).

Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.

The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Performance of Self-Compacting Concrete Slab with Grinded Local Rocks
...Show More Authors

The effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep

... Show More
View Publication Preview PDF
Crossref