Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms represented by Iteratively Weighted Kalman Filter Smoothing (IWKFS) algorithm and in combination with the Expectation Maximization (EM) algorithm. Average Mean Square Error (AMSE) and Cross Entropy Error (CEE) were used as comparison’s criteria. The methods and procedures were applied to data generated by simulation using a different combination of sample sizes and the number of intervals.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreThis work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 1,2 and m =1,2 n ≠ m. Characterizations concerning these concepts and several theorems are studied, where j = q , δ, a , pre, b, b.
The article critically analyzes traditional translation models. The most influential models of translation in the second half of the 20th century have been mentioned, among which the theory of formal and dynamic equivalence, the theory of regular correspondences, informative, situational-denotative, functional-pragmatic theory of communication levels have been considered. The selected models have been analyzed from the point of view of the universality of their use for different types and types of translation, as well as the ability to comprehend the deep links established between the original and the translation.
Аннотация