Background: Suppression of quorum sensing (QS) that regulates many virulence factors, including antimicrobial resistance, in bacteria may subject the pathogenic microbes to the harmful consequences of the antibiotics, increasing their susceptibility to such drugs. Aim: The current study aimed to make an aqueous crude extract from the soil Proteus mirabilis isolate with the use of the gas chromatography-mass spectrometry (GC-MS) technique for its analysis, and then, study the impact of the extract on clinical isolates of Pseudomonas aeruginosa. Methods: Preparation of crude extracts from P. mirabilis (both organic and aqueous), which were then analyzed by GC-MS to detect the bioactive ingredients. Furthermore, the extract’s capability to interfere with both the expression of the QS of P. aeruginosa and its antibacterial resistance was examined. Results: The highest GC-MS peak (37.11%.) appeared for 1,3-benzodioxole, 4-methoxy-6-(2-propenyl), along with the presence of other components of antibacterial activities. When the aqueous extract was added to the culture of two multi-drug resistant (MDR) P. aeruginosa, a significant reduction in the expression of the QS regulatory gene LasI occurred, indicating its interference with QS. Moreover, upon adding the extract to the culture of P. aeruginosa (MDR) and then subjecting it to Amikacin and Colistin, already not effective on the bacteria, the isolates became more susceptible to these antibiotics showing zones of inhibition of 25 and 17 mm, respectively. Conclusion: The crude aqueous extract of the soil P. mirabilis isolate might be a potential producer of QS inhibitors with antibacterial activities that render the MDR P. aeruginosa more susceptible to antibiotics to whom they already exerted resistance.
Two isolates of Pseudomonas aeruginosa were isolated from patients with Urinary Tract Infection (UTI). The aim of this study was to determine the antimicrobial effect of alcoholic leaves extract of Salvia officinalis on Multidrug resistant (MDR) P. aeruginosa. Using the well diffusion test, the alcoholic leaves extract at 100mg/ml and 200 mg /ml was shown to possess antimicrobial activity against the tested microorganism. The inhibition zones of S. officinalis at 200 mg/ml, and 100 mg/ml of the extract showed diameters of 23mm and 20mm, respectively. But the diameters of the inhibition zones caused by treatment with the antibiotics Ciprofloxacin, Ticarcillin + Clavulanic acid, and Cefotaxime w
... Show MorePseudomonas aeruginosa is an opportunistic pathogen. Quorum sensing (QS) is one of processes that are responsible for biofilm formation. P. aeruginosa can live in different environments, some of which are pathogenic (clinical isolates) and some that are found outside the body (environmental isolates). The present study aimed to determine the presence of a number of genes responsible for QS in clinical and environmental isolates of P. aeruginosa. In the present study full DNA was separated from all environmental and clinical isolates that contained seven genes (rhlA, rhlR, rhlI, lasR, lasI, lasB, phzA1) associated with QS occurrence. The tot
... Show MoreThis study focused on the synthesis of chitosan-alginate (CH-ALg) nanoparticles by ionotropic gelation technique using sodium alginate and calcium chloride. The particle size of the synthesized nanoparticles was confirmed by atomic force microscope (AFM) and it was 61.9 nm. While the nature of functional groups present in chitosan nanoparticles was determined by FT-IR analysis. The antibacterial activity of chitosan-alginate was tested against multidrug resistance (MDR) gram- positive (Enterococcus faecalis) and gram-negative (Proteus mirabilis) bacteria. The results showed a significant effect against MDR isolates. The nanoparticles were loaded with the antibiotic doxycycline in order to improv
... Show MoreSeparation of uricase from Pseudomonas aeruginosa was done using (70%) satu-ration ammonium sulphate, and purification of this enzyme was done by ion ex-change chromatography on DEAE- cellulose column and eluted with linear NaCl (0-1M). Partial purified uricase gave an activity of (4.9 u/ml), protein concentration of (0.56 mg/ml), specific activity of (8.75 unit/mg) with purification folds (8.4) and a yield of (48%). The maximum purified uricase activity was detected at 35ºc and pH 8.5 with (0.12 mM.uric acid). The results shown that red cabbage extract (RCE) contain flavonoides which contain phenolic compounds and anthocyanines which glycoslated with mono or dimolecules of saccharides, while test for alkaloids, ster-oids, saponins and
... Show MorePseudomonas aeruginosa is considered as a developing opportunistic nosocomial pathogen and is well-known for its multidrug resistance that can be efficiently treated by a combination of antibiotics andefflux pump inhibitors (EPI). Therefore, the purpose of this study was to investigate the effect of curcumin as an EPI for the enhancement of the effectiveness of antibiotics against multidrug resistant (MDR) isolates ofP. aeruginosa. Susceptibility patterns of suspected bacteria was determined using the disc diffusion method andresistant bacteria were identified using chromogenic agar and 16S rDNA. The effectsof curcuminon the enhancement of antibiotics’s activity was evaluated usingthe broth microd
... Show MoreThis study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM im
... Show MoreThis study aimed to explore whether green synthesized copper nanoparticles (CuNPs) can function as an anti-biofilm agent produced by P. mirabilis. The nanoparticles were synthesized from cells free extract of P. mirabilis. Characterization of biosynthesized copper nanoparticles was carried out to determine the chemical and physical properties of the product using atomic-force microscopy (AFM), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-visible spectroscopy. The hexagonal structure was confirmed by XRD, size range was marked 13-19nm by TEM. FESEM was used to confirm the surface morphology. AFM analysis was used to reveal the roughne
... Show MoreThe aim of this study is to evaluating the antibacterial activity of Laurus nobilis leaves extract in hospital environment isolates. Maceration and Soxhlet apparatus were used to prepare aqueous and methanolic extracts. The total phenolic content and high-performance liquid chromatography (HPLC) were conducted to determine the active compounds in the extracts. The results showed that the methanolic and aqueous extracts contain four flavonoids derivatives (kaempferol, luteolin, quercetin and Rutin) were identified on the basis of matching retention time with the standards. The total phenolic contents were 56.81 and 81.56 mg/g in 50 mg/ml, in aqueous and methanolic extracts respectively. The antibacterial activity of Laurus nobilis leaves ext
... Show MoreThe study was aimed at inhibiting the protease produced by Pseudomonas aeruginosa using an 80% alcoholic extract of Conocarpus lancifolius leaves. A total of 146 isolates of P. aeruginosa that were isolated and identified by microscopic and biochemical tests were 51 isolates submitted to primary and secondary screening techniques in order to choose the qualified P. aeruginosa isolate for protease synthesis. Among these isolates, forty-seven isolates showed hydrolysis zones on skim milk media (primary screening); six isolates were chosen for secondary screening. The result revealed that P. aeruginosa P51 had the highest ability to produce the enzyme, with a specific activity of 15.9 U/
... Show More