The low-pressure sprinklers have been widely used to replace the high-pressure impact sprinklers in the lateral move sprinkler irrigation system due to its low operating cost and high efficiency. However, runoff losses under the low-pressure sprinkler irrigation machine can be significant. This study aims to evaluate the performance of the variable pulsed irrigation algorithm (VPIA) in reducing the runoff losses under low-pressure lateral move sprinkler irrigation machine for three different soil types. The VPIA uses the ON-OFF pulsing technique to reduce the runoff losses by controlling the number and width of the pulses considering the soil and the irrigation machine properties. Also, the VPIA aims to achieve a balance between four critical goals: reduce the runoff losses, deliver the highest possible irrigation depth, ensure a high level of water distribution uniformity in the direction movement, and with the lowest number of pulses. From a wide range of pulses numbers and widths tested applying a certain water depth to three soil types (Loamy Sand, Sandy Loam, Loam), the best solution that satisfies the algorithm goals was selected. A MATLAB code was written to simulate the soil infiltration rate, the sprinkler application rate, and to apply the proposed algorithm. The simulation results show a runoff reduction of at least 91.76% for Loamy sand, 90.7% for Sandy Loam, and 97.79% for Loam soils with a high level of distribution uniformity while delivering the highest possible irrigation depth using the lowest number of pulses.
This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreThe aim of the present work, was measuring of uranium concentrations in 25 soil samples from five locations of Al-Kut city. The samples taken from different depths ranged from soil surface to 60cm step 15 cm, for this measurement of uranium concentrations .The most widely used technique SSNTDs was chosen to be the measurement technique. Results showed that the higher concentrations were in Hai Al- Kafaat which recorded 1.49 ± 0.054 ppm . The uranium content in soil samples were less than permissible limit of UNSCEAR(11.7ppm).
Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreTillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory
Evaluating the behavior of a ring foundation resting on multi-layered soil is one of the important issues facing civil engineers. Many researchers have studied the behavior of ring foundation rests on multi-layered soil with vertical loads acting on the foundation. In real life ring foundation can be subjected to both vertical and horizontal loads at the same time due to wind or the presence of soil. In this research, the behavior of ring footing subjected to inclined load has been studied using PLAXIS software. Furthermore, the effect of multi-layered soil has been simulated in the model. The results showed that both vertical and horizontal stresses are mainly affected when the inclination angle of the load exceeded 45 degrees with a reduc
... Show MoreExistence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within
... Show MoreAneurysms of the cortical branches of the middle cerebral artery (MCA) are rare. They usually are secondary to traumatic or infectious etiologies and are rarely idiopathic. The specific characteristics of idiopathic aneurysms in such location are not well defined in the literature. The authors report a rare case of a ruptured giant idiopathic cortical MCA aneurysm with review of the available literature on this clinical entity.
A 24-year-old female presented with headache, disturbed level of consciousness, and right-sided weakness. Imaging studies showed a left frontoparietal intracer