Preferred Language
Articles
/
phemXI8BVTCNdQwCoG5_
Study of the Transition State of SnO<sub>2</sub> Cluster with NO<sub>2</sub> Gas Molecule via Density Functional Theory
...Show More Authors

Density functional theory (DFT) with B3LYP level and 6-311G[Formula: see text] basis sets for light atoms like N and O and SDD basis sets for heavy atoms like Sn is used to examine the interaction of tin dioxide nanocrystals with nitrogen dioxide as a function of temperature from 273[Formula: see text]K to 373[Formula: see text]K through a Gaussian 09W software program. Gibbs free energy, enthalpy, and entropy of activation and reaction are calculated. The situation of transition of SnO2 clusters toward nitrogen dioxide is investigated. According to the findings, the activation energy of SnO2 clusters with nitrogen dioxide increases as the temperature rises (in negative value). Gauss view 05 was used to investigate the geometrical structure of SnO2 cluster nanostructures and the nitrogen molecule. Spectroscopic analysis of the force constant, IR, Raman scattering and reduced masses as a function of frequencies had been investigated and compared to the experimental value of longitudinal optical (LO) modes of 690[Formula: see text]cm[Formula: see text] for SnO2 and 1600[Formula: see text]cm[Formula: see text] for NO2.

Scopus Clarivate Crossref
View Publication