Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic principle. For that reason, this research was executed to compare gravity and pressure sand filters in terms of construction, use, efficiency, filtration rate, cost, benefit, and drawbacks to predict the performance of those units under different conditions and from an economic standpoint. It also served as a presentation and review of previous studies dealing with the evaluation and development of pressure and gravity filters. This paper gives a brief overview of filtration theory, the types and properties of filter media, filter backwashing, and operational problems that can be avoided in the filtration process.
In developing countries, conventional physico-chemical methods are commonly used for removing contaminants. These methods are not efficient and very costly. However, new in site strategy with high treatment efficiency and low operation cost named constructed wetland (CW) has been set. In this study, Phragmites australis was used with free surface batch system to estimate its ability to remediate total
petroleum hydrocarbons (TPH) and chemical oxygen demand (COD) from Al-Daura refinery wastewater. The system operated in semi-batch, thus, new wastewater was weekly added to the plant for 42 days. The results showed high removal percentages (98%) of TPH and (62.3%) for COD. Additionally, Phragmites australis biomass increased significant
Magnetosphere is a region of space surrounding Earth magnetic field, the formation of magnetosphere depends on many parameters such as; surface magnetic field of the planet, an ionized plasma stream (solar wind) and the ionization of the planetary upper atmosphere (ionosphere). The main objective of this research is to find the behavior of Earth's magnetosphere radius (Rmp) with respect to the effect of solar wind kinetic energy density (Usw), Earth surface magnetic field (Bo), and the electron density (Ne) of Earth's ionosphere for three years 2016, 2017 and 2018. Also the study provides the effect of solar activity for the same period during strong geomagnetic storms on the behavior of Rmp. F
... Show MorePhysical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and metal surface area of fresh and spent hydrodesulphurization catalyst Co-MoAl2O3 .Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery. The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores of these samples are cylindrical, and the
... Show MoreIn this work , we applied the nuclear shell model by using Modified Surface Delta Interaction ( MSDI ) to study the nuclear structure for Ti42-44 nuclei from the calculation of the energy level values and its total angular momentum . After comperation with the experiment values which found to be rather in good agreement and determined the total angular momentum values of energy levels which are not assigned experimently , as soon as , we certify some values that were not certained experimently .
In this research, deposition of titanium oxide (TiO2) and vanadium oxide (V2O5) thin film in different mixing percentage (0, 25 ,50, 75 and100)% on the substrate of glass .The coating thickness was ( 50 nm ).
In this research contact angle was measured and the effect of weather conditions. Results showed that the value of the contact angle of the prepared films reached its highest value at 50% (TiO2+V2O5) was 160º.
The results showed that the optical transmittance of TiO2 and V2O5 thin film decrease with increasing the deposition angle and decrease with increasing V2O5 pro
... Show MorePhysical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K and hydrogen gas using volumetric apparatus at room temperature, respectively. These analyses were used to determine the effect of coke deposition and poisoning metal on surface area, pore size distribution, and metal surface area of fresh and spent hydrodesulphurization catalyst Co-Mo\Al2O3 . Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery. The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores of these samples are cylindrical, an
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MorePhysical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K
and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for
determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and
metal surface area of fresh and spent hydrodesulphurization catalyst Co-Mo\Al2O3 .
Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery.
The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with
fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores
of these sample
A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode
... Show MoreEfficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres
... Show More